The demand for water resources in the area south of the Dead Sea due to continued development, especially at the Arab Potash Company (APC) for production and domestic purposes necessitates that water quality in the ...The demand for water resources in the area south of the Dead Sea due to continued development, especially at the Arab Potash Company (APC) for production and domestic purposes necessitates that water quality in the area be monitored and evaluated based on the local geology and hydrogeology. The objective of this paper is to monitor seasonal fluctuations of groundwater and to determine how fluctuation in the water levels will affect the groundwater quality. Groundwater levels were found to be influenced by rainfall and pumping of water from the wells for domestic and industrial use. Twenty water samples were collected from different wells and analyzed for major chemical constituents both in pre- and post-seasons to determine the quality variation. Chemical constituents are significantly increased after post-season recharge. According to the overall assessment of the area, water quality was found to be useful for drinking, irrigation and industry.展开更多
As numerical modeling is an effective tool for managing groundwater resources and predicting future responses, in this study, the author has intended to assess groundwater flow through Modflow 6 and Model Muse into Po...As numerical modeling is an effective tool for managing groundwater resources and predicting future responses, in this study, the author has intended to assess groundwater flow through Modflow 6 and Model Muse into Pointe-Noire coastal aquifers. The results showed that the fourth scenario has the biggest effect on the drawdown and seawater intrusion extent. Different parameters including evapotranspiration, recharge, model boundary, etc. were adjusted to run the model. The fourth scenario with the highest pumping rate value caused a slight increase of head values over the values simulated.展开更多
The uncertainty and sensitivity of predicted positions and thicknesses of seawater-freshwater mixing zones with respect to uncertainties of saturated hydraulic conductivity, porosity, molecular diffusivity, longitudin...The uncertainty and sensitivity of predicted positions and thicknesses of seawater-freshwater mixing zones with respect to uncertainties of saturated hydraulic conductivity, porosity, molecular diffusivity, longitudinal and transverse dispersivities were investigated in both head-control and flux-control inland boundary systems. It shows that uncertainties and sensitivities of predicted results vary in different boundary systems. With the same designed matrix of uncertain factors in simulation experiments, the variance of predicted positions and thickness in the flux-control system is much larger than that predicted in the head-control system. In a head-control system, the most sensitive factors for the predicted position of the mixing zone are inland freshwater head and transverse dispersivity. However, the predicted position of the mixing zone is more sensitive to saturated hydraulic conductivity in a flux-control system. In a head-control system, the most sensitive factors for the predicted thickness of the mixing zone include transverse dispersivity, molecular diffusivity, porosity, and longitudinal dispersivity, but the predicted thickness is more sensitive to the saturated hydraulic conductivity in a flux-control system. These findings improve our understandings for the development of seawater-freshwater mixing zone during seawater intrusion processes, and give technical support for groundwater resource management in coastal aquifers.展开更多
Natural weak acidic groundwater occurs in the unconfined and confined aquifers consisting of Quaternary and Neogene unconsolidated sediments near Beihai in southern Guangxi, China. Under natural conditions the groundw...Natural weak acidic groundwater occurs in the unconfined and confined aquifers consisting of Quaternary and Neogene unconsolidated sediments near Beihai in southern Guangxi, China. Under natural conditions the groundwater has low TDS(less than 200 mg L-1) and low concentrations of trace elements(less than 100 μg L-1) with a deceasing tend in contents of the Lanthanides(rare earth elements, less than 1 μg L-1) towards higher atomic number. The groundwater ranges in p H from 3.33 to 7.0 with an average value of 5.12(even lower than that of local rainwater, 5.88). p H values in the groundwater are a bit higher in rainy seasons than those in dry seasons and do not show significant increasing or decreasing trend with time. The average p H value in groundwater in the confined aquifers is even a bit lower than that in the unconfined aquifer. Comprehensive analyses of the groundwater environment suggest that H+ in the groundwater may be derived from dissociation of H2CO3, release of the absorbed H3O+ in clay layers and the acidity of rainwater. The H2CO3 in the groundwater may be formed by dissolution of CO2(g). Minerals in the unconsolidated sediment are predominated by quartz with small amount of clay minerals. The sediments undergoing a long-term weathering contain low levels of soluble constitutes. Lack of alkaline substances in the groundwater system is also helpful in the accumulation of acidity of the groundwater.展开更多
Groundwater resources occur in a multi aquifer system in the alluvial coastal plain near Beihai, China. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge through subter...Groundwater resources occur in a multi aquifer system in the alluvial coastal plain near Beihai, China. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge through subterranean drainage into the sea and through artificial pumping. A quasi three dimensional finite element model has been used to simulate the spatial and temporal distribution of groundwater levels in the aquifers. Various input parameters were considered in the simulation model. A linear optimization model has been developed for groundwater development within the coastal aquifers. The objective function of the model is to maximize the total groundwater pumpage from the confined aquifer. The control of sea water intrusion is examined by the restriction of the water levels at points along the coast and of the pumping rates in coastal management cells. The response matrix used in the optimization model was generated from the simulation model by forecasting drawdown produced by pumping at a unit impulse discharge. Groundwater development can be primarily optimized by the alteration of the pumping rates of the existing wells.展开更多
The synthesis of geological and petroleum research undertaken in the coastal Sedimentary Basin of the Pointe-Noire region enabled the establishment of a lithostratigraphic scale. It has been observed that the order in...The synthesis of geological and petroleum research undertaken in the coastal Sedimentary Basin of the Pointe-Noire region enabled the establishment of a lithostratigraphic scale. It has been observed that the order in which the series observed in outcrop and those encountered by deep wells succeed each other has allowed a value to be given to this relative scale. The study area corresponds to a longitudinal tectonic accident, fault or flexure. It belongs to the Cretaceous and Tertiary coastal sedimentary basin covered by the Plio-Pleistocene age formations (series of circuses), formed of highly permeable sands comprising multiple resistant horizons that store large bodies of water whose reserves are considered very important. Hydrographic network is composed of four main basins with a mediocre size. The quality of this groundwater is considered to be satisfactory for household consumption, but the sustainable management of these reserves requires constant checks on their quality as well as on the level of the reserves. All these resources put the agglomeration of Pointe-Noire close to large exploitable water reserves that meet the need for drinking water, even if, on the whole, the agglomeration is still experiencing many difficulties in terms of its drinking water supply.展开更多
Most studies on solute transport in coastal aquifers affected by tides focus on the transport of instantaneous released solute,and there are few studies on continuously released solute affected by tides.In this study,...Most studies on solute transport in coastal aquifers affected by tides focus on the transport of instantaneous released solute,and there are few studies on continuously released solute affected by tides.In this study,the image monitoring method is used to establish the quantitative relationship between the concentration of the colored tracer and the hue value of the image,and the digital image is used to determine the tracer concentration distribution.Using image monitoring method laboratory experiments,quantitative analysis of the characteristics of continuously released solute transport in coastal unconfined aquifers under the tidal influence.Experiments show that the high tide inhibits the increase in the concentration of each point in the aquifer.Under the influence of tides,the solute plume retreats towards the land.During the low tide period,the solute plume migrates toward the sea again.And the solute plume will maintain a relatively stable shape after entering the aquifer for a long enough time.Ignoring the tidal effect seems to have little effect on the estimation of the position of the solute plume,but ignoring the tidal effect has a certain influence on the estimation of the dispersion range of the solute plume.No matter whether considering the tidal action,the final dispersion range of the solute plume is almost the same.But before the solute plume reaches a stable state,ignoring the tidal effect will lead to a smaller dispersion range of the solute plume.展开更多
Large groundwater table fluctuations were observed in a coastal aquifer during an offshore storm. The storm induced significant changes of the mean shoreline elevation, characterized by a pulse like oscillation. This...Large groundwater table fluctuations were observed in a coastal aquifer during an offshore storm. The storm induced significant changes of the mean shoreline elevation, characterized by a pulse like oscillation. This pulse propagated in the aquifer, resulting in the water table fluctuations. A general analytical solution is derived to quantify this new mechanism of water table fluctuation. The solution is applied to field observations and is found to be able to predict reasonably well the observed storm induced water table fluctuations. Based on the analytical solution, the damping characteristics and phase shift of the oscillation as it propagates inland are examined.展开更多
Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the loca...Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the location of the fresh water-salt water interface in a homogeneous, isotropic, and unconfined coastal aquifer can be estimated based on a piezometric head of fresh water at a point in the fresh water zone (from the water table to the interface) vertically lined up with a piezometric head of salt water at a point in the salt water zone (from the interface down). Research shows that the new method is a general relation and that both the Hubbert relation describing the location of the interface and the Ghy- ben--Herzberg relation are special cases of this method. The method requires two piezometric wells to be close to each other and each tapping into a different zone. Measurements of piezometric heads at a well cluster consisting of piezometric wells tapping separately into fresh water and salt water zones near Beihai, China at 5-day intervals for 15 months are used to illustrate the estimation of interface location. The depth of the interface for well H5 ranges from 32 to 72 m below the sea level.展开更多
A model is traced to evaluate and enumerate the significance of vulnerability to seawater intrusion due to excessive ground water withdrawals and some anthropogenic activities at coastal aquifers. So taking these issu...A model is traced to evaluate and enumerate the significance of vulnerability to seawater intrusion due to excessive ground water withdrawals and some anthropogenic activities at coastal aquifers. So taking these issues into account few thematic maps which were influencing the saline water intrusion were prepared and overlaid using Geographical Information Systems (GIS). Based on GALDIT method, the groundwater vulnerability cartography has been assessed. To reckon the GALDIT index it requires six parameters like aquifer type, aquifer hydraulic conductivity, depth to groundwater level (AMSL), distance from the shore, impact of existing status of seawater intrusion and thickness of the aquifer. This GALDIT is the indicator scores and summing them and dividing by the total weight for determining the relative role of each one. Apart from this an identification of saltwater intruded area is done by using indicators of saltwater intrusion like Cl/(HCO<sub>3</sub> + CO<sub>3</sub>) ratio and Na/Cl ratio. The vulnerability areas are classified as moderate with an area of 147.31 sq. km and low covering an area of 168.72 sq. km respectively based on the thematic maps. The final thematic map can be used for management of the coastal ground water resources.展开更多
Naturally occurring radium(^(223)Ra,^(224)Ra,^(226)Ra,and^(228)Ra)isotopes have been widely applied as geochemical tracers in marine environments,especially when estimating the submarine groundwater discharge(SGD).In ...Naturally occurring radium(^(223)Ra,^(224)Ra,^(226)Ra,and^(228)Ra)isotopes have been widely applied as geochemical tracers in marine environments,especially when estimating the submarine groundwater discharge(SGD).In this sense,the influencing factors and transport mechanism of radium isotope activity in aquifers can be key information for SGD estimation.This work evaluates the adsorption/desorption behavior of^(224)Ra and^(226)Ra in the solid-liquid phase through a leaching experiment and analysis of field data.The results suggested that radium isotope activity was positively correlated with salinity and grain size,in the case of abundant sediments.Through ion analysis,we found that the ions(Na^(+),Ca^(2+),Mg^(2+),and Ba^(2+))exchanged with radium isotopes in the process of transport.A 1-D reactive transport model was established to simulate the transport process of radium isotope in aquifers.The model successfully simulated the variation of radium isotope desorption activity with salinity and was subsequently verified in the field.This study contributes to the understanding of the geochemical behavior of radium isotopes in aquifers and provides guidance for selecting a suitable groundwater endmember in SGD estimation.展开更多
Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extra...Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations,which range in age from Recent to Tertiary.The public water distribution system uses dug and tube wells.Though there were reports on fluoride contamination,this study reports for the first time excess fluoride and excess salinity in the drinking water of the region.The quality parameters,like Electrical Conductivity(EC) ranges from 266 to 3900 μs/cm,the fluoride content ranges from 0.68 to2.88 mg/L,and the chloride ranges between the 5.7 to 1253 mg/L.The main water types are Na-HC03,NaCO3 and Na-Cl.The aqueous concentrations of F- and CO32- show positive correlation whereas F- and Ca2+ show negative correlation.The source of fluoride in the groundwater could be from dissolution of fluorapatite,which is a common mineral in the Tertiary sediments of the area.Long residence time,sediment-groundwater interaction and facies changes(Ca-HCO3 to Na-HCO3) during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area.High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area.The water quality index computation has revealed that 62%of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards.Since the groundwater is the only source of drinking water in the area,proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.展开更多
The estuary-bay system is a common and complex coastal environment.However,quantifying submarine groundwater discharge(SGD)and associated nutrient fluxes in the complex coastal environment is challenging due to more d...The estuary-bay system is a common and complex coastal environment.However,quantifying submarine groundwater discharge(SGD)and associated nutrient fluxes in the complex coastal environment is challenging due to more dynamic and complicated riverine discharge,ocean processes and human activities.In this study,SGD and SFGD(submarine fresh groundwater discharge)fluxes were evaluated by combining stable and radium isotopes in the Guangdong-Hong Kong-Macao Greater Bay Area(GBA),a typical estuary-bay system.We first built a spatially distributed radium mass balance model to quantify SGD fluxes in coastal areas of GBA integrating the Pearl River Estuary(PRE),bays and shelf.We then used the stable water isotope(d2 H and d18O)end-member mixing model to distinguish submarine fresh groundwater discharge(SFGD)from SGD.Based on the 228Ra mass balance,the estimated SGD fluxes in the PRE,adjacent bay,and shelf areas were(6.14±2.74)×10^(8) m^(3) d^(-1),(3.00±1.11)×10^(7) m^(3) d^(-1),and(5.00±5.64)×10^(8) m^(3) d^(-1),respectively.Results showed that the largest area-averaged SGD was in the PRE,followed by that in the adjacent shelf and the bay.These differences may be mainly influenced by ocean forces,urbanization and benthic topographies controlling the variability of groundwater pathways.Further,the three end-member mixing model of ^(228)Ra and salinity was developed to confirm the validity of the estimated SGD using the Ra mass balance model.In the two models,groundwater endmember and water apparent age estimation were the main sources of uncertainty in SGD.The estimated SFGD flux was(1.39±0.76)108 m^(3) d^(-1),which accounted for approximately 12%of the total SGD.Combining stable and radium isotopes was a useful method to estimate groundwater discharge.Moreover,the estimated SGD associated dissolved inorganic nitrogen(DIN)flux was one order of magnitude higher than other DIN sources.SGD was considered to be a significant contributor to the DIN loading to the GBA.The findings of this study are expected to provide valuable information on coastal groundwater management and environmental protection of the GBA and similar coastal areas elsewhere.展开更多
Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fre...Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed.展开更多
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An eff...The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled.展开更多
This paper describes a quasi 3-D finite element model of the groundwater flow in two -aquifer system which is constructed from a sequence of aquifer flow equations coupled by leakage terms representing flow through th...This paper describes a quasi 3-D finite element model of the groundwater flow in two -aquifer system which is constructed from a sequence of aquifer flow equations coupled by leakage terms representing flow through the aquitard . It is applied to evaluate the maximum rate of groundwater resources exploited from the coastal aquifer without seawater intrusion . The main task in this model is to determine the drainage boundary of the aquifer extending under the sea . The information of the boundary can be obtained from the fluctuations of the groundwater level caused by sea-tide fluctuations . A new idea, Equivalent Drainage Boundary (EDB), is proposed and the corresponding methods , determining the EDB, are developed with tidal fluctuations data observed in boreholes . The quasi 3-D model and the methods determining EDB have been applied to the aquifer system of Beihai peninsula , Guangxi Autonomous Region of China for calculating the available groundwater resources .展开更多
The coastal plain aquifer down gradient of Wad Essaquia Elhamra(WEE),is the main source of groundwater in the arid region of Laayoune Essaquia El Hamra located in south of Morocco.The over-exploitation of this aquifer...The coastal plain aquifer down gradient of Wad Essaquia Elhamra(WEE),is the main source of groundwater in the arid region of Laayoune Essaquia El Hamra located in south of Morocco.The over-exploitation of this aquifer over the last decade for water supply,agriculture and industry led to deterioration of groundwater quality,including seawater intrusion.The objective of this study is to investigate the spatial variation of groundwater quality,and to assess the influence of sea water intrusion on the groundwater quality using hydro-chemical tools.Several measurement campaigns of physico-chemical parameters of the groundwater were performed,which shows a very high mineralization ratios versus chloride,confirming the double influence of mixing mechanisms of fresh and saline waters and the water-rock interactions.Computed seawater fraction for sampled water shows that the average mixing rate of seawater intrusion reached 10.5%,confirming the marine intrusion in the aquifer.The highest values were registered in coastal wells.In the upstream around Laayoune and the spreading area,nitrate concentrations exceed 50 mg/L which is the threshold set by the World Health Organization,revealing a high level of contamination by domestic sewage.The combination of ionic ratios and seawater fraction is a useful tool to assess marine intrusion.This study reveals that the phenomenon of marine intrusion is not the only process that dominates hydrochemistry of ground water.The high groundwater mineralization is also due to rockwater interaction associated with reverse ion exchange with clay material and anthropogenic pollutants.展开更多
In this article, a tide simulation system based on a two-way water pump technique is developed. Using this system and numerical simulations, the groundwater table fluctuation characteristics, relative over height of g...In this article, a tide simulation system based on a two-way water pump technique is developed. Using this system and numerical simulations, the groundwater table fluctuation characteristics, relative over height of groundwater table, and influencing factors of over height are investigated. The experimental and numerical results indicate that the groundwater table fluctuation is of periodic, and of asymmetric. The amplitude of groundwater table fluctuations decreases with the increase of the onshore distances. There are phase lags of groundwater table fluctuations for different monitoring points. The tide can bring about remarkable over height of coastal groundwater table. The dominating factors bring about over height include the tide amplitude, aquifer thickness and tide frequency. Under experimental conditions, the relative tide amplitude over height may exceeded 50% of the maximal tide amplitude, and reach about 10% of aquifer thickness.展开更多
As a basic factor in the environment of estuary, tidal effects in the coastal aquifer have recently attracted much attention because tidal dynamic also greatly influences the solute transport in the coastal aquifer. P...As a basic factor in the environment of estuary, tidal effects in the coastal aquifer have recently attracted much attention because tidal dynamic also greatly influences the solute transport in the coastal aquifer. Previous studies on tidal dynamic of coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Two-dimensional analytical solutions for groundwater level fluctuation in recent papers are localized in presenting the effect of both oceanic tides and estuarine tides in quadrantal aquifer. A two-dimensional model of groundwater fluctuations in estuarine zone in proposed in this paper. Using complex transform, the two-dimensional flow equation subject to periodic boundary condition is changed into time-independent elliptic problem. Based on Green function method, an analytical solution for groundwater fluctuations in fan-shaped aquifer is derived. The response to of groundwater tidal loading in an estuary and ocean is discussed. The result show that its more extensive application than recent studies.展开更多
文摘The demand for water resources in the area south of the Dead Sea due to continued development, especially at the Arab Potash Company (APC) for production and domestic purposes necessitates that water quality in the area be monitored and evaluated based on the local geology and hydrogeology. The objective of this paper is to monitor seasonal fluctuations of groundwater and to determine how fluctuation in the water levels will affect the groundwater quality. Groundwater levels were found to be influenced by rainfall and pumping of water from the wells for domestic and industrial use. Twenty water samples were collected from different wells and analyzed for major chemical constituents both in pre- and post-seasons to determine the quality variation. Chemical constituents are significantly increased after post-season recharge. According to the overall assessment of the area, water quality was found to be useful for drinking, irrigation and industry.
文摘As numerical modeling is an effective tool for managing groundwater resources and predicting future responses, in this study, the author has intended to assess groundwater flow through Modflow 6 and Model Muse into Pointe-Noire coastal aquifers. The results showed that the fourth scenario has the biggest effect on the drawdown and seawater intrusion extent. Different parameters including evapotranspiration, recharge, model boundary, etc. were adjusted to run the model. The fourth scenario with the highest pumping rate value caused a slight increase of head values over the values simulated.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51309091,51239003 and 51279045)the Postdoctoral Science Foundation of China(Grant No.2012M520989)
文摘The uncertainty and sensitivity of predicted positions and thicknesses of seawater-freshwater mixing zones with respect to uncertainties of saturated hydraulic conductivity, porosity, molecular diffusivity, longitudinal and transverse dispersivities were investigated in both head-control and flux-control inland boundary systems. It shows that uncertainties and sensitivities of predicted results vary in different boundary systems. With the same designed matrix of uncertain factors in simulation experiments, the variance of predicted positions and thickness in the flux-control system is much larger than that predicted in the head-control system. In a head-control system, the most sensitive factors for the predicted position of the mixing zone are inland freshwater head and transverse dispersivity. However, the predicted position of the mixing zone is more sensitive to saturated hydraulic conductivity in a flux-control system. In a head-control system, the most sensitive factors for the predicted thickness of the mixing zone include transverse dispersivity, molecular diffusivity, porosity, and longitudinal dispersivity, but the predicted thickness is more sensitive to the saturated hydraulic conductivity in a flux-control system. These findings improve our understandings for the development of seawater-freshwater mixing zone during seawater intrusion processes, and give technical support for groundwater resource management in coastal aquifers.
基金supported by the National Natural Science Foundation of China (41172227, 40172087)the Project of Development Field of High Priority of the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110022130002)
文摘Natural weak acidic groundwater occurs in the unconfined and confined aquifers consisting of Quaternary and Neogene unconsolidated sediments near Beihai in southern Guangxi, China. Under natural conditions the groundwater has low TDS(less than 200 mg L-1) and low concentrations of trace elements(less than 100 μg L-1) with a deceasing tend in contents of the Lanthanides(rare earth elements, less than 1 μg L-1) towards higher atomic number. The groundwater ranges in p H from 3.33 to 7.0 with an average value of 5.12(even lower than that of local rainwater, 5.88). p H values in the groundwater are a bit higher in rainy seasons than those in dry seasons and do not show significant increasing or decreasing trend with time. The average p H value in groundwater in the confined aquifers is even a bit lower than that in the unconfined aquifer. Comprehensive analyses of the groundwater environment suggest that H+ in the groundwater may be derived from dissociation of H2CO3, release of the absorbed H3O+ in clay layers and the acidity of rainwater. The H2CO3 in the groundwater may be formed by dissolution of CO2(g). Minerals in the unconsolidated sediment are predominated by quartz with small amount of clay minerals. The sediments undergoing a long-term weathering contain low levels of soluble constitutes. Lack of alkaline substances in the groundwater system is also helpful in the accumulation of acidity of the groundwater.
基金This paper is partially supported by the Fund for Young Geologists in the Ministry of Geology and Mineral Resources of China(
文摘Groundwater resources occur in a multi aquifer system in the alluvial coastal plain near Beihai, China. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge through subterranean drainage into the sea and through artificial pumping. A quasi three dimensional finite element model has been used to simulate the spatial and temporal distribution of groundwater levels in the aquifers. Various input parameters were considered in the simulation model. A linear optimization model has been developed for groundwater development within the coastal aquifers. The objective function of the model is to maximize the total groundwater pumpage from the confined aquifer. The control of sea water intrusion is examined by the restriction of the water levels at points along the coast and of the pumping rates in coastal management cells. The response matrix used in the optimization model was generated from the simulation model by forecasting drawdown produced by pumping at a unit impulse discharge. Groundwater development can be primarily optimized by the alteration of the pumping rates of the existing wells.
文摘The synthesis of geological and petroleum research undertaken in the coastal Sedimentary Basin of the Pointe-Noire region enabled the establishment of a lithostratigraphic scale. It has been observed that the order in which the series observed in outcrop and those encountered by deep wells succeed each other has allowed a value to be given to this relative scale. The study area corresponds to a longitudinal tectonic accident, fault or flexure. It belongs to the Cretaceous and Tertiary coastal sedimentary basin covered by the Plio-Pleistocene age formations (series of circuses), formed of highly permeable sands comprising multiple resistant horizons that store large bodies of water whose reserves are considered very important. Hydrographic network is composed of four main basins with a mediocre size. The quality of this groundwater is considered to be satisfactory for household consumption, but the sustainable management of these reserves requires constant checks on their quality as well as on the level of the reserves. All these resources put the agglomeration of Pointe-Noire close to large exploitable water reserves that meet the need for drinking water, even if, on the whole, the agglomeration is still experiencing many difficulties in terms of its drinking water supply.
基金supported by the National Natural Science Foundation of China(No.42172281)the Opening Fund of the State Key Laboratory of China University of Geosciences(Wuhan)(No.SKJ2018055)。
文摘Most studies on solute transport in coastal aquifers affected by tides focus on the transport of instantaneous released solute,and there are few studies on continuously released solute affected by tides.In this study,the image monitoring method is used to establish the quantitative relationship between the concentration of the colored tracer and the hue value of the image,and the digital image is used to determine the tracer concentration distribution.Using image monitoring method laboratory experiments,quantitative analysis of the characteristics of continuously released solute transport in coastal unconfined aquifers under the tidal influence.Experiments show that the high tide inhibits the increase in the concentration of each point in the aquifer.Under the influence of tides,the solute plume retreats towards the land.During the low tide period,the solute plume migrates toward the sea again.And the solute plume will maintain a relatively stable shape after entering the aquifer for a long enough time.Ignoring the tidal effect seems to have little effect on the estimation of the position of the solute plume,but ignoring the tidal effect has a certain influence on the estimation of the dispersion range of the solute plume.No matter whether considering the tidal action,the final dispersion range of the solute plume is almost the same.But before the solute plume reaches a stable state,ignoring the tidal effect will lead to a smaller dispersion range of the solute plume.
文摘Large groundwater table fluctuations were observed in a coastal aquifer during an offshore storm. The storm induced significant changes of the mean shoreline elevation, characterized by a pulse like oscillation. This pulse propagated in the aquifer, resulting in the water table fluctuations. A general analytical solution is derived to quantify this new mechanism of water table fluctuation. The solution is applied to field observations and is found to be able to predict reasonably well the observed storm induced water table fluctuations. Based on the analytical solution, the damping characteristics and phase shift of the oscillation as it propagates inland are examined.
基金supported by the Fund for the Special Research of Doctorate Subjects of the Ministry of Education of China (No.20070491522)
文摘Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the location of the fresh water-salt water interface in a homogeneous, isotropic, and unconfined coastal aquifer can be estimated based on a piezometric head of fresh water at a point in the fresh water zone (from the water table to the interface) vertically lined up with a piezometric head of salt water at a point in the salt water zone (from the interface down). Research shows that the new method is a general relation and that both the Hubbert relation describing the location of the interface and the Ghy- ben--Herzberg relation are special cases of this method. The method requires two piezometric wells to be close to each other and each tapping into a different zone. Measurements of piezometric heads at a well cluster consisting of piezometric wells tapping separately into fresh water and salt water zones near Beihai, China at 5-day intervals for 15 months are used to illustrate the estimation of interface location. The depth of the interface for well H5 ranges from 32 to 72 m below the sea level.
文摘A model is traced to evaluate and enumerate the significance of vulnerability to seawater intrusion due to excessive ground water withdrawals and some anthropogenic activities at coastal aquifers. So taking these issues into account few thematic maps which were influencing the saline water intrusion were prepared and overlaid using Geographical Information Systems (GIS). Based on GALDIT method, the groundwater vulnerability cartography has been assessed. To reckon the GALDIT index it requires six parameters like aquifer type, aquifer hydraulic conductivity, depth to groundwater level (AMSL), distance from the shore, impact of existing status of seawater intrusion and thickness of the aquifer. This GALDIT is the indicator scores and summing them and dividing by the total weight for determining the relative role of each one. Apart from this an identification of saltwater intruded area is done by using indicators of saltwater intrusion like Cl/(HCO<sub>3</sub> + CO<sub>3</sub>) ratio and Na/Cl ratio. The vulnerability areas are classified as moderate with an area of 147.31 sq. km and low covering an area of 168.72 sq. km respectively based on the thematic maps. The final thematic map can be used for management of the coastal ground water resources.
基金The Joint Funds of the National Natural Science Foundation of China under contract Nos U22A20580 and U2106203the National Natural Science Foundation of China under contract No.41706067the Open Project Program of Key Laboratory of Ecological Warning,Protection&Restoration for Bohai Sea,Ministry of Natural Resources under contract No.2022108.
文摘Naturally occurring radium(^(223)Ra,^(224)Ra,^(226)Ra,and^(228)Ra)isotopes have been widely applied as geochemical tracers in marine environments,especially when estimating the submarine groundwater discharge(SGD).In this sense,the influencing factors and transport mechanism of radium isotope activity in aquifers can be key information for SGD estimation.This work evaluates the adsorption/desorption behavior of^(224)Ra and^(226)Ra in the solid-liquid phase through a leaching experiment and analysis of field data.The results suggested that radium isotope activity was positively correlated with salinity and grain size,in the case of abundant sediments.Through ion analysis,we found that the ions(Na^(+),Ca^(2+),Mg^(2+),and Ba^(2+))exchanged with radium isotopes in the process of transport.A 1-D reactive transport model was established to simulate the transport process of radium isotope in aquifers.The model successfully simulated the variation of radium isotope desorption activity with salinity and was subsequently verified in the field.This study contributes to the understanding of the geochemical behavior of radium isotopes in aquifers and provides guidance for selecting a suitable groundwater endmember in SGD estimation.
文摘Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations,which range in age from Recent to Tertiary.The public water distribution system uses dug and tube wells.Though there were reports on fluoride contamination,this study reports for the first time excess fluoride and excess salinity in the drinking water of the region.The quality parameters,like Electrical Conductivity(EC) ranges from 266 to 3900 μs/cm,the fluoride content ranges from 0.68 to2.88 mg/L,and the chloride ranges between the 5.7 to 1253 mg/L.The main water types are Na-HC03,NaCO3 and Na-Cl.The aqueous concentrations of F- and CO32- show positive correlation whereas F- and Ca2+ show negative correlation.The source of fluoride in the groundwater could be from dissolution of fluorapatite,which is a common mineral in the Tertiary sediments of the area.Long residence time,sediment-groundwater interaction and facies changes(Ca-HCO3 to Na-HCO3) during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area.High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area.The water quality index computation has revealed that 62%of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards.Since the groundwater is the only source of drinking water in the area,proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.
基金supported by the National Natural Science Foundations of China(Nos.41890852,42077173)the Shenzhen Science and Technology Innovation Committee(No.JCYJ20190809142417287)State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control.
文摘The estuary-bay system is a common and complex coastal environment.However,quantifying submarine groundwater discharge(SGD)and associated nutrient fluxes in the complex coastal environment is challenging due to more dynamic and complicated riverine discharge,ocean processes and human activities.In this study,SGD and SFGD(submarine fresh groundwater discharge)fluxes were evaluated by combining stable and radium isotopes in the Guangdong-Hong Kong-Macao Greater Bay Area(GBA),a typical estuary-bay system.We first built a spatially distributed radium mass balance model to quantify SGD fluxes in coastal areas of GBA integrating the Pearl River Estuary(PRE),bays and shelf.We then used the stable water isotope(d2 H and d18O)end-member mixing model to distinguish submarine fresh groundwater discharge(SFGD)from SGD.Based on the 228Ra mass balance,the estimated SGD fluxes in the PRE,adjacent bay,and shelf areas were(6.14±2.74)×10^(8) m^(3) d^(-1),(3.00±1.11)×10^(7) m^(3) d^(-1),and(5.00±5.64)×10^(8) m^(3) d^(-1),respectively.Results showed that the largest area-averaged SGD was in the PRE,followed by that in the adjacent shelf and the bay.These differences may be mainly influenced by ocean forces,urbanization and benthic topographies controlling the variability of groundwater pathways.Further,the three end-member mixing model of ^(228)Ra and salinity was developed to confirm the validity of the estimated SGD using the Ra mass balance model.In the two models,groundwater endmember and water apparent age estimation were the main sources of uncertainty in SGD.The estimated SFGD flux was(1.39±0.76)108 m^(3) d^(-1),which accounted for approximately 12%of the total SGD.Combining stable and radium isotopes was a useful method to estimate groundwater discharge.Moreover,the estimated SGD associated dissolved inorganic nitrogen(DIN)flux was one order of magnitude higher than other DIN sources.SGD was considered to be a significant contributor to the DIN loading to the GBA.The findings of this study are expected to provide valuable information on coastal groundwater management and environmental protection of the GBA and similar coastal areas elsewhere.
文摘Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed.
文摘The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled.
文摘This paper describes a quasi 3-D finite element model of the groundwater flow in two -aquifer system which is constructed from a sequence of aquifer flow equations coupled by leakage terms representing flow through the aquitard . It is applied to evaluate the maximum rate of groundwater resources exploited from the coastal aquifer without seawater intrusion . The main task in this model is to determine the drainage boundary of the aquifer extending under the sea . The information of the boundary can be obtained from the fluctuations of the groundwater level caused by sea-tide fluctuations . A new idea, Equivalent Drainage Boundary (EDB), is proposed and the corresponding methods , determining the EDB, are developed with tidal fluctuations data observed in boreholes . The quasi 3-D model and the methods determining EDB have been applied to the aquifer system of Beihai peninsula , Guangxi Autonomous Region of China for calculating the available groundwater resources .
文摘The coastal plain aquifer down gradient of Wad Essaquia Elhamra(WEE),is the main source of groundwater in the arid region of Laayoune Essaquia El Hamra located in south of Morocco.The over-exploitation of this aquifer over the last decade for water supply,agriculture and industry led to deterioration of groundwater quality,including seawater intrusion.The objective of this study is to investigate the spatial variation of groundwater quality,and to assess the influence of sea water intrusion on the groundwater quality using hydro-chemical tools.Several measurement campaigns of physico-chemical parameters of the groundwater were performed,which shows a very high mineralization ratios versus chloride,confirming the double influence of mixing mechanisms of fresh and saline waters and the water-rock interactions.Computed seawater fraction for sampled water shows that the average mixing rate of seawater intrusion reached 10.5%,confirming the marine intrusion in the aquifer.The highest values were registered in coastal wells.In the upstream around Laayoune and the spreading area,nitrate concentrations exceed 50 mg/L which is the threshold set by the World Health Organization,revealing a high level of contamination by domestic sewage.The combination of ionic ratios and seawater fraction is a useful tool to assess marine intrusion.This study reveals that the phenomenon of marine intrusion is not the only process that dominates hydrochemistry of ground water.The high groundwater mineralization is also due to rockwater interaction associated with reverse ion exchange with clay material and anthropogenic pollutants.
基金supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No.0701006B)
文摘In this article, a tide simulation system based on a two-way water pump technique is developed. Using this system and numerical simulations, the groundwater table fluctuation characteristics, relative over height of groundwater table, and influencing factors of over height are investigated. The experimental and numerical results indicate that the groundwater table fluctuation is of periodic, and of asymmetric. The amplitude of groundwater table fluctuations decreases with the increase of the onshore distances. There are phase lags of groundwater table fluctuations for different monitoring points. The tide can bring about remarkable over height of coastal groundwater table. The dominating factors bring about over height include the tide amplitude, aquifer thickness and tide frequency. Under experimental conditions, the relative tide amplitude over height may exceeded 50% of the maximal tide amplitude, and reach about 10% of aquifer thickness.
文摘As a basic factor in the environment of estuary, tidal effects in the coastal aquifer have recently attracted much attention because tidal dynamic also greatly influences the solute transport in the coastal aquifer. Previous studies on tidal dynamic of coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Two-dimensional analytical solutions for groundwater level fluctuation in recent papers are localized in presenting the effect of both oceanic tides and estuarine tides in quadrantal aquifer. A two-dimensional model of groundwater fluctuations in estuarine zone in proposed in this paper. Using complex transform, the two-dimensional flow equation subject to periodic boundary condition is changed into time-independent elliptic problem. Based on Green function method, an analytical solution for groundwater fluctuations in fan-shaped aquifer is derived. The response to of groundwater tidal loading in an estuary and ocean is discussed. The result show that its more extensive application than recent studies.