Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades.It is of utmost importance to decipher the loading mechanism and enhance the resilience of c...Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades.It is of utmost importance to decipher the loading mechanism and enhance the resilience of coastal bridges during extreme wave-inducing events.Quantification of vulnerability of these structures is an essential step in designing a resilient bridge system.Recently,considerable efforts have been made to study the force applied and the response of coastal bridge systems during extreme wave loading conditions.Although remarkable progress can be found in the quantification of load and response of coastal superstructures,very few studies assessed coastal bridge resiliency against extreme wave-induced loads.This paper adopts a simplified and practical technique to analyze and assess the resilience of coastal bridges exposed to extreme waves.Component-level and system-level fragility analyses form the basis of the resiliency analysis where the recovery functions are adopted based on the damage levels.It is shown that wave period has the highest contribution to the variation of bridge resiliency.Moreover,this study presents the uncertainty quantification in resiliency variation due to changes in wave load intensity.Results show that the bridge resiliency becomes more uncertain as the intensity of wave parameters increases.Finally,possible restoration strategies based on the desired resilience level and the attitude of decision-makers are also discussed.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
In the aggressive marine environment over a long-term service period,coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity.This paper investigates the strength reduction of coas...In the aggressive marine environment over a long-term service period,coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity.This paper investigates the strength reduction of coastal bridges,especially focusing on the effects of non-uniform corrosion along the height of bridge piers.First,the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments.To investigate the various damage modes of the concrete cover,a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment.Second,the shear strength of these aging structures is analyzed.Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover.Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures’service time is assumed to be the same.展开更多
基金sponsored by the Natural Science and Engineering Research Council(NSERC)of Canada through the Discovery Grant and additional funding provided by University of Calgary through the start-up grant.
文摘Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades.It is of utmost importance to decipher the loading mechanism and enhance the resilience of coastal bridges during extreme wave-inducing events.Quantification of vulnerability of these structures is an essential step in designing a resilient bridge system.Recently,considerable efforts have been made to study the force applied and the response of coastal bridge systems during extreme wave loading conditions.Although remarkable progress can be found in the quantification of load and response of coastal superstructures,very few studies assessed coastal bridge resiliency against extreme wave-induced loads.This paper adopts a simplified and practical technique to analyze and assess the resilience of coastal bridges exposed to extreme waves.Component-level and system-level fragility analyses form the basis of the resiliency analysis where the recovery functions are adopted based on the damage levels.It is shown that wave period has the highest contribution to the variation of bridge resiliency.Moreover,this study presents the uncertainty quantification in resiliency variation due to changes in wave load intensity.Results show that the bridge resiliency becomes more uncertain as the intensity of wave parameters increases.Finally,possible restoration strategies based on the desired resilience level and the attitude of decision-makers are also discussed.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金National Natural Science Foundation of China under Grant No.51678197the Major State Basic Research Development Program of China(973 Program)under Grant No.2011CB013604Fundamental Research Funds for the Central Universities of China with Grant No.HIT.BRETIV.201320
文摘In the aggressive marine environment over a long-term service period,coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity.This paper investigates the strength reduction of coastal bridges,especially focusing on the effects of non-uniform corrosion along the height of bridge piers.First,the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments.To investigate the various damage modes of the concrete cover,a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment.Second,the shear strength of these aging structures is analyzed.Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover.Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures’service time is assumed to be the same.