High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However,...High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However, low frequency GPR surveys to investigate fault-related depositional systems at greater depths are scarce. This survey was designed investigate a > 100 km long linear escarpment that controls the northwest margin of the Lagoa do Peixe, an important lagoon in Rio Grande do Sul Coastal Plain (RGSCP, Brazil). The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;no deformational structure is admitted to exist before. The low frequency GPR (50 MHz, RTA antenna) and geological surveys carried out in the RGSCP showed the existence of a large, gravity-driven listric growth fault controlling the Lagoa do Peixe escarpment and hangingwall sedimentation. The radargrams in four subareas along the Lagoa do Peixe Growth Fault could be interpreted following the seismic expression of rift-related depositional systems. The radargrams enabled to distinguish three main lagoonal deposition radarfacies. The lower lagoonal radarfacies is a convex upward unit, thicker close to growth fault;the radarfacies geometry indicates that fault displacement rate surpasses the sedimentation rate, and its upper stratum is aged ~3500 <sup>l4</sup>C years BP. The second lagoonal radarfacies is a triangular wedge restricted to the lagoon depocenter, whose geometry indicates that fault displacement and the sedimentation rates kept pace. The upper lagoonal radarfacies is being deposited since 1060 ± 70 <sup>l4</sup>C years BP, under sedimentation rate higher than fault displacement rate. The results indicate that low frequency GPR surveys can help in investigating fault-related depositional systems in coastal zones. They also point to a new approach in dealing with RGSCP stratigraphy.展开更多
The coastal dunes located near the Ashirmata region, south of Mandvi beach lies near the straight coast have been stud-ied by making use of sedimentological information and Ground Penetrating Radar (GPR) data. Sedimen...The coastal dunes located near the Ashirmata region, south of Mandvi beach lies near the straight coast have been stud-ied by making use of sedimentological information and Ground Penetrating Radar (GPR) data. Sedimentological analy-sis reveals the NNW-SSE trending longitudinal dunes consists of well sorted fine sands with unimodal distribution pos-sibly formed by constant wind gust and also the point out to the origin of sediments from single source;mostly the sediments derived from Indus delta transported to beach by long shore drift and tidal waves, carried inland by local on-shore winds. The radargram confirms, the homogenous sand layers with paleosols at shallow depth slip faces are proba-bly formed due to extreme storm activity of Recent.展开更多
An X-band pulsed Doppler microwave radar has been used to determine the characteristics of breaking waves. Field experiments were conducted at the Shuang-Si estuary in the north of Taiwan in the winter of 2005. Analys...An X-band pulsed Doppler microwave radar has been used to determine the characteristics of breaking waves. Field experiments were conducted at the Shuang-Si estuary in the north of Taiwan in the winter of 2005. Analyses on maxima radar cross section and Doppler frequency shift are done to characterize wave breaking zones. Based on observations of breaking waves, the wave breaking zones are shown to be located at water depths of 1.8 to 2.2 m in the experimental site. In general, the results indicate that a radar system has the potential to delineate the spatial variation of breaking waves clearly and that this is sufficient to achieve a measurement operation for near-shore air-sea interaction events.展开更多
Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made,that reveal important implications for the coastal washover barrier boundary hierarchy and interpretatio...Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made,that reveal important implications for the coastal washover barrier boundary hierarchy and interpretations of this depositional record.A four-fold hierarchy bounding-surface model,representing different levels of impact and genesis,is defined.Each level of the hierarchy is enclosed by a distinct kind of surface characterized by different ground-penetrating radar reflection features,sedimentary characteristics(color,grain size,sorting,rounding and sedimentary structures) and origin.We suggest that this hierarchical model can be applied to any coastal washover barrier deposits.展开更多
针对海岸带区域地理信息系统(geographic information system,GIS)矢量数据和合成孔径雷达(syntheticaperture radar,SAR)图像所表达信息的不同,探讨多尺度GIS矢量数据约束下的高分辨率SAR图像多尺度分割.在县级GIS矢量数据约束下,利用...针对海岸带区域地理信息系统(geographic information system,GIS)矢量数据和合成孔径雷达(syntheticaperture radar,SAR)图像所表达信息的不同,探讨多尺度GIS矢量数据约束下的高分辨率SAR图像多尺度分割.在县级GIS矢量数据约束下,利用分形网络演化分割方法对高分辨率SAR图像进行分割,得到第1层分割结果.然后在省级GIS矢量数据约束下,对第1层分割结果进行聚合,得到第2层分割结果.该方法既能实现GIS矢量数据约束下的高分辨率SAR图像多尺度分割,获得满足GIS矢量数据约束和根据后向散射特征聚合的多尺度分割结果,又能消除瞬时SAR图像海岸线不确定的不足.利用一幅天津地区的SAR图像进行实验,证实了该方法是一种有意义的图像多尺度分割方法,且得到的分割结果可用于有特定需求的图像分析和统计.展开更多
文摘High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However, low frequency GPR surveys to investigate fault-related depositional systems at greater depths are scarce. This survey was designed investigate a > 100 km long linear escarpment that controls the northwest margin of the Lagoa do Peixe, an important lagoon in Rio Grande do Sul Coastal Plain (RGSCP, Brazil). The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;no deformational structure is admitted to exist before. The low frequency GPR (50 MHz, RTA antenna) and geological surveys carried out in the RGSCP showed the existence of a large, gravity-driven listric growth fault controlling the Lagoa do Peixe escarpment and hangingwall sedimentation. The radargrams in four subareas along the Lagoa do Peixe Growth Fault could be interpreted following the seismic expression of rift-related depositional systems. The radargrams enabled to distinguish three main lagoonal deposition radarfacies. The lower lagoonal radarfacies is a convex upward unit, thicker close to growth fault;the radarfacies geometry indicates that fault displacement rate surpasses the sedimentation rate, and its upper stratum is aged ~3500 <sup>l4</sup>C years BP. The second lagoonal radarfacies is a triangular wedge restricted to the lagoon depocenter, whose geometry indicates that fault displacement and the sedimentation rates kept pace. The upper lagoonal radarfacies is being deposited since 1060 ± 70 <sup>l4</sup>C years BP, under sedimentation rate higher than fault displacement rate. The results indicate that low frequency GPR surveys can help in investigating fault-related depositional systems in coastal zones. They also point to a new approach in dealing with RGSCP stratigraphy.
文摘The coastal dunes located near the Ashirmata region, south of Mandvi beach lies near the straight coast have been stud-ied by making use of sedimentological information and Ground Penetrating Radar (GPR) data. Sedimentological analy-sis reveals the NNW-SSE trending longitudinal dunes consists of well sorted fine sands with unimodal distribution pos-sibly formed by constant wind gust and also the point out to the origin of sediments from single source;mostly the sediments derived from Indus delta transported to beach by long shore drift and tidal waves, carried inland by local on-shore winds. The radargram confirms, the homogenous sand layers with paleosols at shallow depth slip faces are proba-bly formed due to extreme storm activity of Recent.
文摘An X-band pulsed Doppler microwave radar has been used to determine the characteristics of breaking waves. Field experiments were conducted at the Shuang-Si estuary in the north of Taiwan in the winter of 2005. Analyses on maxima radar cross section and Doppler frequency shift are done to characterize wave breaking zones. Based on observations of breaking waves, the wave breaking zones are shown to be located at water depths of 1.8 to 2.2 m in the experimental site. In general, the results indicate that a radar system has the potential to delineate the spatial variation of breaking waves clearly and that this is sufficient to achieve a measurement operation for near-shore air-sea interaction events.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120022130002)the State Scholarship Fund from the China Scholarship Council(No.201406400030)
文摘Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made,that reveal important implications for the coastal washover barrier boundary hierarchy and interpretations of this depositional record.A four-fold hierarchy bounding-surface model,representing different levels of impact and genesis,is defined.Each level of the hierarchy is enclosed by a distinct kind of surface characterized by different ground-penetrating radar reflection features,sedimentary characteristics(color,grain size,sorting,rounding and sedimentary structures) and origin.We suggest that this hierarchical model can be applied to any coastal washover barrier deposits.
文摘针对海岸带区域地理信息系统(geographic information system,GIS)矢量数据和合成孔径雷达(syntheticaperture radar,SAR)图像所表达信息的不同,探讨多尺度GIS矢量数据约束下的高分辨率SAR图像多尺度分割.在县级GIS矢量数据约束下,利用分形网络演化分割方法对高分辨率SAR图像进行分割,得到第1层分割结果.然后在省级GIS矢量数据约束下,对第1层分割结果进行聚合,得到第2层分割结果.该方法既能实现GIS矢量数据约束下的高分辨率SAR图像多尺度分割,获得满足GIS矢量数据约束和根据后向散射特征聚合的多尺度分割结果,又能消除瞬时SAR图像海岸线不确定的不足.利用一幅天津地区的SAR图像进行实验,证实了该方法是一种有意义的图像多尺度分割方法,且得到的分割结果可用于有特定需求的图像分析和统计.