期刊文献+
共找到878篇文章
< 1 2 44 >
每页显示 20 50 100
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
1
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING saline Water soil Acidity soil alkalinity
下载PDF
Approach of water-salt regulation using micro-sprinkler irrigation in two coastal saline soils
2
作者 Lin-lin Chu Yu Zhu +4 位作者 Ling Xiong Rong-yu Huang Yao-hu Kang: Zhan-peng Liu Xiao-ming Geng 《Water Science and Engineering》 EI CAS CSCD 2023年第1期106-112,共7页
This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkl... This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkler irrigation in three stages was used to regulate soil matric potential at a 20-cm soil depth.Continued regulation of soil water and salt through micro-sprinkler irrigation consistently resulted in an increasingly large low-salinity region.The application of the three stages of soil wateresalt regulation resulted in an absence of salt accumulation throughout the soil profile and the conversion of highly saline soils into moderately saline soils.There were increases in the plant height,leaf width,leaf length,and tiller numbers of tall fescue throughout the leaching process.The results showed that micro-sprinkler irrigation in three soil water and salt regulation stages can be used to successfully cultivate tall festuca in highly saline coastal soil.This approach achieved better effects in sandy loam soil than in silt soil.Tall fescue showed greater survival rates in sandy loam soil due to the rapid reclamation process,whereas plant growth was higher in silt soil because of effective water conservation.In sandy loam,soil moisture should be maintained during soil reclamation,and in silt soil,soil root-zone environments optimal for the emergence of plants should be quickly established.Micro-sprinkler irrigation can be successfully applied to the cultivation of tall fescue in coastal heavy saline soils under a three-stage soil wateresalt regulation regime. 展开更多
关键词 coastal saline soils Micro-sprinkler irrigation Salt leaching Tall fescue Wateresalt regulation
下载PDF
Study on Soil Improvement Measure of Plant Landscape Construction in Saline and Alkaline Area in Tianjin 被引量:2
3
作者 GENG Meiyun CHEN Yajun HU Haihui YU Lei 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第2期163-168,共6页
A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the s... A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the soil, and also we got some useful advices and suggestions for plants cultivating in Tianiin saline and alkaline areas. 展开更多
关键词 saline and alkaline area the view of the plant soil improving measure
下载PDF
Characteristics and Spatial Variability of Saline-Alkaline Soil Degradation in the Typical Yellow River Delta Area of Kenli County, China 被引量:3
4
作者 Zhuoran Wang Gengxing Zhao +3 位作者 Mingxiu Gao Chunyan Chang Jichao Jia Jin Li 《Journal of Environmental Protection》 2014年第12期1053-1063,共11页
As an important area of reserve land resources, the Yellow River Delta is faced with the problem of soil salinization. Grasping the characteristics of soil salinity as well as its spatial variation patterns is an impo... As an important area of reserve land resources, the Yellow River Delta is faced with the problem of soil salinization. Grasping the characteristics of soil salinity as well as its spatial variation patterns is an important foundation of prevention, control and utilization of saline soil. This study selected Kenli County of the Yellow River Delta, obtained soil salinity data through field survey and lab experiment, and used statistical, GIS interpolation and buffer analysis methods to analyze the characteristics of soil salinity and its spatial variation patterns. Our results showed that the general soil salinity in the study area was mainly moderate and there was a significant positive correlation between different soil layers of 0 - 15 cm, 15 - 30 cm and 30 - 45 cm and soil salinity increased with the increase of soil depth. The areas with high soil salinity in each soil layer mainly distributed in the east near the Bo Sea in the county, while the areas with lower soil salinity mainly distributed in the southwest, centre and the two sides of the Yellow River in the northeast. Soil salinity showed a trend of decrease with the increase in distance to the Bo Sea, while stretching from the Yellow River, it showed increase tendency with the increase in distance to the Yellow River. The order from high soil salinity to low of different vegetation types was naked land → suaeda glauca → tamarix → vervain → reed → couch grass → paddy → cotton → winter wheat → maize;the order for different geomorphic types was depression → slightly sloping ground → slow hillock → high flood land. This study preliminary delineated the characteristics of soil salinity as well as its spatial variation patterns in the study area, and provided scientific basis for soil resource sustainable utilization in the Yellow River Delta. 展开更多
关键词 Kenli COUNTY saline-alkaline soil Degradation soil salinITY Spatial Variation
下载PDF
Denitrification Potential of Marsh Soils in Two Natural Saline-alkaline Wetlands
5
作者 BAI Junhong ZHAO Qingqing +3 位作者 WANG Junjing LU Qiongqiong YE Xiaofei GAO Zhaoqin 《Chinese Geographical Science》 SCIE CSCD 2014年第3期279-286,共8页
Little information is available on denitrification potential of marsh soils in natural saline-alkaline wetlands. The denitrification potentials of an open wetland in the floodplain(Erbaifangzi wetland) and a closed we... Little information is available on denitrification potential of marsh soils in natural saline-alkaline wetlands. The denitrification potentials of an open wetland in the floodplain(Erbaifangzi wetland) and a closed wetland(Fulaowenpao wetland) in backwater areas in Jilin Province of Northeast China were monitored by an anaerobic incubation at 30℃ for 25 days. Our results showed that the relative denitrification index(RDI) increased gradually with incubation time, and showed a rapid increase in the first 5 days of incubation. The RDI values declined quickly from surface soils to subsurface soils and then kept a small change in deeper soils along soil profiles over the incubation time. Denitrification proceeded much faster in the top 20 cm soils of open wetland than in the closed wetland, whereas no significant differences in RDI values were observed in deeper soils between both wetlands. The RDIs were significantly negatively correlated with bulk density and sand content, while a significantly positive correlation with clay content, soil organic matter, total nitrogen and phosphorous. The maximum net NO–3-N loss through denitrification in 1 m depth were higher in the open wetland than the closed wetland with higher soil pH values. Future research should be focused on understanding the influencing mechanisms of soil alkalinity. 展开更多
关键词 反硝化活性 盐碱湿地 沼泽土壤 天然 RDI值 培养时间 土壤有机质 正相关关系
下载PDF
Application of nitrogen-fixing cyanobacteria in restoration of saline and alkaline soils of Songnen Plain in China
6
作者 赵军 张巍 +1 位作者 张杰 冯玉杰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期35-41,共7页
The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio ... The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) of different saline soils were studied and compared. Results show that different saline soils exhibit various physico-chemical properties. Saline-sodic soils in Songnen Plain are ameliorated by using nitrogen-fixing blue-green algae 888 in the experiment. It is indicated that cyanobacteria 888 can grow in saline and alkaline soils, and the conditions favorable for its growth are soil moisture of 50% and dry algae inoculation at 0.03 mg/cm2. The main actions of nitrogen-fixing cyanobacteria are keeping the adsorbability of rubber sheath for sodium, increasing the organic matter content of the soils and decreasing the pH and the degree of salinity in the soils. But the arid climate and soil depth are the main factors that limit the restoration of saline and alkaline soils. 展开更多
关键词 固氮蓝藻 松嫩平原 碱性土壤 生理盐水 中国 应用 土壤有机质含量 盐碱土壤
下载PDF
Effect of Fermented Plant Products on Alkaline-Saline Soil and the Growth of Alfalfa Seedlings
7
作者 Hui WANG Lei WANG +2 位作者 Qixin LU Zhenwen XU Guijun WANG 《Asian Agricultural Research》 2017年第3期86-88,共3页
A pot experiment was conducted by putting ameliorants,the products of plants fermented by lactobacillus,and sandy soil into alkaline-saline soil. After such blending,the soil physicochemical properties and the growth ... A pot experiment was conducted by putting ameliorants,the products of plants fermented by lactobacillus,and sandy soil into alkaline-saline soil. After such blending,the soil physicochemical properties and the growth index of Alfalfa seedlings were measured in order to explore the influence of the blending on alkaline-saline soil and the growth of alfalfa seedlings. The results showed that soil p H decreased significantly after adding ameliorant; mixing ameliorant and sandy soil into alkaline-saline soil reduced soil evaporation and increased the germination rate of alfalfa seeds and their chlorophyll content as well as the seedling height,root length of alfalfa seedlings,but it had no significant effect on alfalfa seedlings' biomass and leaf number; besides,excessive ameliorant would inhibit the growth of alfalfa seedlings. 展开更多
关键词 Fermented plant products alkaline-saline soil Ameliorant Growth index
下载PDF
Reclamation of Coastal Soil Salinity towards Sustainable Rice Production and Mitigating Global Warming Potentials in the Changing Climate
8
作者 Muhammad Aslam Ali Md. Ashraful Islam Khan +3 位作者 Md. Abdul Baten Hafsa Jahan Hiya Murad Ahmed Farukh Shuvo Kumar Sarkar 《American Journal of Climate Change》 2023年第1期100-115,共16页
Soil salinity has become a major constraint to rice productivity in the coastal region of Bangladesh, which threatened food security. Therefore, field experiment was conducted at salt stressed Shyamnagor Upazilla of S... Soil salinity has become a major constraint to rice productivity in the coastal region of Bangladesh, which threatened food security. Therefore, field experiment was conducted at salt stressed Shyamnagor Upazilla of Satkhira district to improve the soil salinity status, sustainable rice production and suppression of global warming potentials. Selected soil amendments viz. trichocompost, tea waste compost, azolla compost and phospho-gypsum (PG) were applied in the field plots one week prior to rice transplanting. In addition, proline solution (25 mM) was applied on the transplanted rice plants at active vegetative stage. Gas samples from the paddy field were collected by Closed Chamber technique and analyzed in by Gas Chromatograph. The 25% replacement of chemical fertilizer (i.e., 75% NPKS) with trichocompost, tea waste compost, Azolla compost and Phospho-gypsum amendments increased grain yield by 4.7% - 7.0%, 2.3% - 7.1% 11.9% - 16.6% and 9.5% - 14.2% during dry boro rice cultivation, while grain yield increments of 5.0% - 7.6%, 2.3% - 10.2%, 12.8% - 15.3% and 10.2% - 15.3% were recorded in wet Aman season respectively, compared to chemically fertilized (100% NPKS) field plot. The least GWPs 3575 and 3650 kg CO<sub>2</sub> eq./ha were found in PG Cyanobacterial mixture with proline (T10) and tea waste compost with proline (T8) amended rice field, while the maximum GWPs 4725 and 4500 kg CO<sub>2 </sub>eq./ha were recorded in NPKS fertilized (100%, T2) and NPKS (75%) with Azolla compost (T5) amended plots during dry boro rice cultivation. The overall soil properties improved significantly with the selected soil amendments, while soil electrical conductivity (EC), soil pH and Na+ cation in the amended soil decreased, eventually improved the soil salinity status. Conclusively, phospho-gypsum amendments with cyanobacteria inoculation and proline solution (25 mM) application could be an effective option to reclaim coastal saline soils, sustaining rice productivity and reducing global warming potentials. 展开更多
关键词 coastal Paddy soil salinity Global Warming Phospho-Gypsum CYANOBACTERIA PROLINE
下载PDF
Effects of water application intensity of microsprinkler irrigation on water and salt environment and crop growth in coastal saline soils 被引量:4
9
作者 CHU Lin-lin KANG Yao-hu WAN Shu-qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第10期2077-2089,共13页
Laboratory and field experiments were conducted to investigate the effects of water application intensity(WAI) on soil salinity management and the growth of Festuca arundinacea(festuca) under three stages of water... Laboratory and field experiments were conducted to investigate the effects of water application intensity(WAI) on soil salinity management and the growth of Festuca arundinacea(festuca) under three stages of water and salt management strategies using microsprinkler irrigation in Hebei Province, North China. The soil water content(è) and salinity of homogeneous coastal saline soils were evaluated under different water application intensities in the laboratory experiment. The results indicated that the WAI of microsprinkler irrigation influenced the è, electrical conductivity(ECe) and p H of saline soils. As the WAI increased, the average values of è and ECe in the 0–40 cm profile also increased, while their average values in the 40–60 cm profile decreased. The p H value also slightly decreased as depth increased, but no significant differences were observed between the different treatments. The time periods of the water redistribution treatments had no obvious effects. Based on the results for è, ECe and p H, a smaller WAI was more desirable. The field experiment was conducted after being considered the results of the technical parameter experiment and evaporation, wind and leaching duration. The field experiment included three stages of water and salt regulation, based on three soil matric potentials(SMP), in which the SMP at a 20-cm depth below the surface was used to trigger irrigation. The results showed that the microsprinkler irrigation created an appropriate environment for festuca growth through the three stages of water and salt regulation. The low-salinity conditions that occurred at 0–10 cm depth during the first stage(-5 k Pa) continued to expand through the next two stages. The average p H value was less than 8.5. The tiller number of festuca increased as SMP decreased from the first stage to the third stage. After the three stages of water and salt regulation, the highly saline soil gradually changed to a low-saline soil. Overall, based on the salt desalinization, the microsprinkler irrigation and three stages of water and salt regulation could be successfully used to cultivate plants for the reclamation of coastal saline land in North China. 展开更多
关键词 coastal saline soil microsprinkler irrigation water application intensity soil salinity water and salt regulation RECLAMATION
下载PDF
Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields 被引量:8
10
作者 GUO Xiao-hong LAN Yu-chen +5 位作者 XU Ling-qi YIN Da-wei LI Hong-yu QIAN Yong-de ZHENG Gui-ping LU Yan-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期540-553,共14页
Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic s... Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies. 展开更多
关键词 rice yield salinealkaline soil nitrogen accumulation paddy field Songnen Plain
下载PDF
Effect of different water application intensity and irrigation amount treatments of microirrigation on soil-leaching coastal saline soils of North China 被引量:3
11
作者 CHU Lin-lin KANG Yao-hu WAN Shu-qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第9期2123-2131,共9页
In coastal regions, Bohai Gulf is one of the most affected areas by salinization. To study the effects of mocrosprinkler irrigation on the characteristics of highly saline sandy loam soil(ECe(saturated paste extract... In coastal regions, Bohai Gulf is one of the most affected areas by salinization. To study the effects of mocrosprinkler irrigation on the characteristics of highly saline sandy loam soil(ECe(saturated paste extract)=22.3 d S m^–1; SAR(sodium adsorption ratio)=49.0) of North China, a laboratory experiment was conducted. Five water application intensity(WAI) treatments(1.7, 3.1, 5.3, 8.8, and 10.1 mm h^–1), five irrigation amount(IA) treatments(148, 168, 184, 201, and 223 mm) and three time periods of water redistribution(0, 24 and 48 h) were employed in the study. A compounding microsprinkler system was used for the WAI treatments, and a single microsprinkler was used for the IA treatments. The results indicated that, as soil depth increased, soil water content(θ) increased and then slightly decreased; with WAI and IA consistently increasing, the relatively moist region expanded and the average θ increased. Meanwhile, soil ECe increased as soil depth increased, and the zone with low soil salinity expanded as WAI and IA increased. Although the reduction of the average SAR was smaller than that of the average electrical conductivity of the ECe, these variables decreased in similar fashion as WAI and IA increased under microsprinkler irrigation. The average p H decreased as soil depth increased. Longer time periods of water redistribution led to lower salinity and slight expansion of the SAR zone. Considering the effects of leached salts in coastal saline soils, greater WAI and IA values are more advantageous under unsaturated flow conditions, as they cause better water movement in the soil. After leaching due to microsprinkler irrigation, highly saline soil gradually changes to moderately saline soil. The results provide theoretical and technological guidance for the salt leaching and landscaping of highly saline coastal environments. 展开更多
关键词 coastal saline soil microsprinkler irrigation SAR reclamation
下载PDF
Microbial diversity in the saline-alkali soil of a coastal Tamarix chinensis woodland at Bohai Bay, China 被引量:5
12
作者 LIU Wanqiu ZHANG Wei +2 位作者 LIU Guangxiu ZHANG Yanhua ZHANG Gaosen 《Journal of Arid Land》 SCIE CSCD 2016年第2期284-292,共9页
Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chine... Soil salinization or alkalization is a form of soil desertification. Coastal saline-alkali soil represents a type of desert and a key system in the network of ecosystems at the continent-ocean interface. Tamarix chinensis is a drought-tolerant plant that is widely distributed in the coastal saline-alkali soil of Bohai Bay, China. In this study, we used 454 pyrosequencing techniques to investigate the characteristics and distribution of the microbial diversity in coastal saline-alkali soil of the T. chinensis woodland at Bohai Bay. A total of 20,315 sequences were obtained, representing 19 known bacterial phyla and a large proportion of unclassified bacteria at the phylum level. Proteobacteria, Acidobacteria and Actinobacteria were the predominant phyla. The coverage of T. chinensis affected the microbial composition. At the phylum level, the relative abundance of y-Proteobacteria and Bacteroidetes decreased whereas Actinobacteria increased with the increasing coverage of T. chinensis. At the genus level, the proportions of Steroidobacter, Lechevalieria, Gp3 and Gp4 decreased with the increase of the vegetation coverage whereas the proportion of Nocardioides increased. A cluster analysis showed that the existing T. chinensis changed the niches for the microorganisms in the coastal saline-alkali soil, which caused changes in the microbial community. The analysis also distinguished the microbial community structure of the marginal area from those of the dense area and sparse area. Furthermore, the results also indicated that the distance to the seashore line could also affect certain groups of soil bacteria in this coastal saline-alkali soil, such as the family Cryomorphaceae and class Flavobacteria, whose population decreased as the distance increased. In addition, the seawater and temperature could be the driving factors that affected the changes. 展开更多
关键词 coastal saline-alkali soil Tamarix chinensis BACTERIA PYROSEQUENCING
下载PDF
Reclamation of Coastal Saline Soils by Bnilding Dykes for Freshwater Fish-Farming 被引量:1
13
作者 DAIZHI-XIN DAIHAI-XU 《Pedosphere》 SCIE CAS CSCD 1995年第2期187-191,共5页
ReclamationofCoastalSalineSoilsbyBnildingDykesforFreshwaterFish-FarmingDAIZHI-XIN ̄1;CHENGUANG-YA ̄1;DAIHAI-XU... ReclamationofCoastalSalineSoilsbyBnildingDykesforFreshwaterFish-FarmingDAIZHI-XIN ̄1;CHENGUANG-YA ̄1;DAIHAI-XU ̄2andXUEZHU-TIAN ̄... 展开更多
关键词 修堤建坝 淡水养鱼 滨海盐碱土 土壤改良
下载PDF
Soil remediation of degraded coastal saline wetlands by irrigation with paper mill effluent and plowing
14
作者 XIAMeng-jing LIU Zhi-mei LU Zhao-hua 《Journal of Forestry Research》 SCIE CAS CSCD 2012年第2期267-274,共8页
Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal sa- line-alkaline wetl... Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal sa- line-alkaline wetlands. Three treatments were employed, viz., control (CK), irrigated with 10 cm depth of TPME (I), and plowing to 20 cm deep before irrigating 10 cm depth ofTPME (IP). Results show that both I-treatment and IP-treatment could improve soil structure by decreasing bulk density by 5% and 8%. Irrigation with TPME containing low salinity stimulated salts leaching instead of accumulating. With anti-waterlogging ditches, salts were drained out of soil. Irrigation with 10 cm depth of TPME lowered total soluble salts in soil and sodium adsorption ration by 33% and 8%, respective!y, but there was no significant difference compared with CK, indicating that this irrigation rate was not heavy enough to remarkably reduce so!l salinity and sodicity, Thus, in-i: gation rate should be enhanced in order to reach better effects of desalinization and desodication. Irrigation with TPME significantly increased soil organic matter, alkali-hydrolyzable nitrogen and available phosphorus due to the abundant organic matter in TPME. Plowing increased soil air circulation, so as to enhance mineralization of organic matter and lead to the loss of organic matter; however, plowing significantly improvedsoil alkali-hydrolyzable nitrogen and available phosphorus. Improvements of physicochemical properties in I-treatment and IP-treatment both boosted soil microbial population and activity. Microbial biomass carbon increased significantly by 327% (I-treatment) and 451% (IP-treatment), while soil respiration increased significantly by 316% (I-treatment) and 386% (IP-treatment). Urease and dehydrogenase activities in both I-treatment and IP-treatment were significantly higher than that in CK. Phosphatase in IP-treatment was significantly higher than that in CK. Compared to I-treatment, IP-treatment improved all of the soil properties except for soil organic matter. The key to remediation of degraded sa- line-alkaline wetlands is to decrease soil salinity and sodicity; thus, irri- gation plus plowing could be an ideal method of soil remediation. 展开更多
关键词 anti-waterlogging ditches degraded saline-alkaline wetlands PLOWING remediation soil property treated paper mill effluent
下载PDF
Characteristics of Channeling Flow in Cultivated Horizon of Saline Rice Soil 被引量:1
15
作者 LUO Jinming DENG Wei +2 位作者 ZHANG Xiaoping YANG Fan LI Xiujun 《Chinese Geographical Science》 SCIE CSCD 2006年第4期342-346,共5页
By applying bromide ion as tracer,the channeling flow has been quantitatively described in saline rice soil and alkaline soil of Da,an City,Jilin Province of China.Breakthrough curves of bromide ion in the saline rice... By applying bromide ion as tracer,the channeling flow has been quantitatively described in saline rice soil and alkaline soil of Da,an City,Jilin Province of China.Breakthrough curves of bromide ion in the saline rice soils after 1-year cultivation and 5-year cultivation and alkaline soil have been attained.Results show that the rice cultivation practice can improve the alkaline soil structure,however,it can accelerate the development of channeling flow pathway.Therefore,the channeling flow pathway has been developed widely in saline rice soil,but rarely in the alkaline soil.Three models of convection-dispersion equation(CDE),transfer functional model(TFM) and Back-Progation Network(BP Network) were used to simulate the transportation process of bromide ion.The peaks of probability density function of saline rice soil are higher with left skewed feature compared with that of the alkaline soil.It shows that the TFM and CDE can simulate the transportation process of the bromide ion in saline rice soil after 5-year cultivation,however,some deviation exists when it was used to simulate transportation process of bromide ion in saline rice soil after 1-year cul-tivation and alkaline soil;BP network can effectively simulate transportation process of bromide ion in both saline rice soil and alkaline soil. 展开更多
关键词 明渠流 盐渍水稻土 盐碱土 耕作层 对流-扩散方程 吉林省 传递函数
下载PDF
Soil Salinity and Soil Water Content Estimation Using Digital Images in Coastal Field:A Case Study in Yancheng City of Jiangsu Province,China
16
作者 XU Lu MA Hongyuan WANG Zhichun 《Chinese Geographical Science》 SCIE CSCD 2022年第4期676-685,共10页
Soil is the essential part for agricultural and environmental sciences,and soil salinity and soil water content are both the important influence factors for sustainable development of agriculture and ecological enviro... Soil is the essential part for agricultural and environmental sciences,and soil salinity and soil water content are both the important influence factors for sustainable development of agriculture and ecological environment.Digital camera,as one of the most popular and convenient proximal sensing instruments,has its irreplaceable position for soil properties assessment.In this study,we collected 52 soil samples and photographs at the same time along the coast in Yancheng City of Jiangsu Province.We carefully analyzed the relationship between soil properties and image brightness,and found that soil salt content had higher correlation with average image brightness value than soil water content.From the brightness levels,the high correlation coefficients between soil salt content and brightness levels concentrated on the high brightness values,and the high correlation coefficients between soil water content and brightness levels focused on the low brightness values.Different significance levels(P)determined different brightness levels related to soil properties,hence P value setting can be an optional way to select brightness levels as the input variables for modeling soil properties.Given these information,random forest algorithm was applied to develop soil salt content and soil water content inversion models using randomly 70%of the dataset,and the rest data for testing models.The results showed that soil salt content model had high accuracy(R_(v)^(2)=0.79,RMSE_(v)=12 g/kg,and RPD_(v)=2.18),and soil water content inversion model was barely satisfied(R_(v)^(2)=0.47,RMSE_(v)=3.04%,and RPD_(v)=1.38).This study proposes a method of modeling soil properties with a digital camera.Combining unmanned aerial vehicle(UAV),it has potential popularization and application value for precise agriculture and land management. 展开更多
关键词 soil salinity soil water content coastal soil digital image
下载PDF
Self-Assembly Effects of Seafood Waste and Cow Dung to Remediate Saline Soil
17
作者 Kejun Wen Cong Liu +2 位作者 Liping Wu Chao Ma Yuyao Zhang 《Agricultural Sciences》 2015年第8期807-816,共10页
This research is based on the U8 (43) uniform table to conduct uniform experiments for improving saline soil. Different proportions of saline soil and silt, with a composted residue of marine fish and seashells that w... This research is based on the U8 (43) uniform table to conduct uniform experiments for improving saline soil. Different proportions of saline soil and silt, with a composted residue of marine fish and seashells that was mixed with sawdust and cow dung, were chosen as the assembly factors. The improvement coefficients for available nitrogen phosphorus of the mixed salt mud and for the production of tall fescue hay were adopted as the characterization values. According to the causal relations that were previously established by 64 types of permutations and combinations, the optimal assembly scheme with maximum characterization values was determined. The results indicate that the artificial soil that consisted of saline soil and silts in a ratio of 8:2;sea fish waste, shellfish trash and sawdust in a ratio of 5:4:1;and 8 kg of cow dung (10 wt%) is the best among the 64 types of composting treatments. Under the improved conditions, the predictive values of the increasing coefficients of valid nitrogen and valid phosphorus in the soil are 1.99 and 1.93, respectively;the predictive value of the tall fescue in a unit area production is 238.83 g·m-2. Its error accuracy is more than 99.82%. All of the above results indicate that utilizing the saline soil improvement media, which is composed of Haihe river silts, fish and shellfish slag, cow dung, and other wastes, provides a new option for saline soil improvement. 展开更多
关键词 Haihe ESTUARY SEDIMENTS SEAFOOD RESIDUE coastal saline soil Improvement Regression Analysis
下载PDF
Calibration of Soil Electromagnetic Conductivity in Inverted Salinity Profiles with an Integration Method 被引量:9
18
作者 YAO Rong-Jian YANG Jin-Song LIU Guang-Ming 《Pedosphere》 SCIE CAS CSCD 2007年第2期246-256,共11页
Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water e... Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water extract (EC1:5) using an electromagnetic induction instrument (EM38). The modeled coefficients, one of the successful and classical methods hitherto, were chosen to calibrate the EM38 measurements of the inverted salinity profiles of characteristic coastal saline soils at selected sites of Xincao Farm, Jiangsu Province, China. However, this method required three parameters for each depth layer. An integration approach, based on an exponential decay profile model, was proposed and the model was fitted to all the calibration sites. The obtained model can then be used to predict EC1:5 at a certain depth from electromagnetic measurements made using the EM38 device positioned in horizontal and vertical positions at the soil surface. This exponential decay model predicted the EC1:5 well according to the results of a one-way analysis of variance, and the further comparison indicated that the modeled coefficients appeared to be slightly superior to, but not statistically different from, this exponential decay model. Nevertheless, this exponential decay model was more significant and practical because it depended on less empirical parameters and could be used to perform point predictions of EC1:5 continuously with depth. 展开更多
关键词 校准方法 土壤 电导率 盐分
下载PDF
凋落物输入变化对黄河三角洲柽柳人工林土壤有机碳及其组分的影响
19
作者 李永涛 魏海霞 +6 位作者 王莉莉 王霞 杜振宇 高嘉 王振猛 张军 董琪琪 《东北林业大学学报》 CAS CSCD 北大核心 2024年第7期64-70,共7页
为探究凋落物输入变化对土壤有机碳库的影响,明确凋落物对森林生态系统土壤碳循环的作用,以黄河三角洲滨海盐碱地柽柳人工林为研究对象,通过设置添加凋落物(LA)、去除凋落物(LR)和对照(CK)3种处理方法,分析凋落物不同输入变化对土壤理... 为探究凋落物输入变化对土壤有机碳库的影响,明确凋落物对森林生态系统土壤碳循环的作用,以黄河三角洲滨海盐碱地柽柳人工林为研究对象,通过设置添加凋落物(LA)、去除凋落物(LR)和对照(CK)3种处理方法,分析凋落物不同输入变化对土壤理化性质、土壤有机碳及其组分的影响。结果表明:凋落物添加和去除处理影响土壤理化性质的变化,与对照相比,添加凋落物降低了土壤密度和含盐量,增加了土壤含水量和养分(全氮、全磷、全钾),而去除凋落物则相反。3种处理对土壤有机碳(SOC)及其储量以及活性有机碳组分的影响一致,均表现为LA处理影响最大,LR处理影响最小,其中LA处理比CK增加了SOC质量分数及储量,但增加不显著;LR处理则显著降低了SOC质量分数及其储量,土层深度(d)0<d≤10 cm土层,LR处理比CK处理的SOC质量分数及其储量分别显著降低了34.93%、12.66%,10 cm<d≤20 cm土层,LR处理比CK处理的SOC质量分数及其储量分别显著降低了24.27%、16.13%。LA处理的土壤SOC及可溶性有机碳(DOC)、易氧化有机碳(EOC)、微生物量碳(MBC)质量分数均出现明显的表聚现象,而LR处理影响则不显著,且DOC和MBC则出现随土层深度增加而增大的趋势。土壤惰性有机碳(ROC)质量分数在不同土层间存在差异,0<d≤10 cm土层,各处理表现为LA>CK>LR,10 cm<d≤20 cm土层,各处理则表现为CK>LA>LR,而在CK和LR处理出现随土层增加而增加的趋势,偏于向土层下方积累。土壤密度(BD)与SOC及其各组分呈负相关,而土壤含水量(WC)、全氮、全磷与SOC及EOC、MBC、DOC质量分数呈极显著正相关(P<0.01)。因此,不同处理方式及不同土层深度的土壤密度、全氮质量分数和土壤含水量是影响SOC及组分变化的主要环境因子。 展开更多
关键词 柽柳人工林 凋落物 土壤理化性质 土壤有机碳 滨海盐碱地
下载PDF
燕麦对滨海盐渍土的适应性及纳盐改土效果
20
作者 陈建爱 陈为京 +2 位作者 张燕 郭来春 任长忠 《山东农业科学》 北大核心 2024年第6期159-164,共6页
为探索燕麦植株对滨海盐渍土的适应性及纳盐改土效果,本试验以白燕2号为材料,在东营的3种类型滨海盐渍土上(轻度、中度、重度)设6个区顶凌播种,观测燕麦农艺性状及田间覆盖率,测定燕麦全株及籽粒产量和燕麦不同部位及收获期0~20 cm土层... 为探索燕麦植株对滨海盐渍土的适应性及纳盐改土效果,本试验以白燕2号为材料,在东营的3种类型滨海盐渍土上(轻度、中度、重度)设6个区顶凌播种,观测燕麦农艺性状及田间覆盖率,测定燕麦全株及籽粒产量和燕麦不同部位及收获期0~20 cm土层土壤可溶性盐和Na+含量。结果表明,白燕2号在3种滨海盐渍土壤中均能生长,但适应程度不同,全株产量为3.320~18.780 t·hm^(-2),籽粒产量为0.456~4.106 t·hm^(-2),基本趋势为轻度盐渍土>中度盐渍土>重度盐渍土;燕麦利用植株的储盐能力将盐渍土部分可溶性盐移出土壤,燕麦全株移出可溶性盐量为0.161~1.508 t·hm^(-2),籽粒移出可溶性盐量为2.961~43.242 kg·hm^(-2);春季返盐高峰后,裸露地土壤表层盐表聚严重,试验区燕麦收获期0~20 cm土层土壤可溶性盐和Na+含量均有不同程度的降低;燕麦植株不同部位的可溶性盐、Na+分配结果显示,燕麦秸秆含盐量最高,达96.954 g·kg^(-1),是根的3.576倍、籽粒的12.803倍,秸秆内Na+含量最高,为20.242 g·kg^(-1),是根的5.190倍、籽粒的55.763倍。可见,燕麦植株通过在不同部位间合理分配可溶性盐和Na+来提高燕麦的耐盐性。综上表明,燕麦植株通过吸盐、储盐、收获移盐等纳盐过程对滨海盐渍土的改良效果明显。 展开更多
关键词 燕麦 滨海盐渍土 适应性 纳盐 土壤改良
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部