A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are ...A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are used to understand the snowfall process, including why the precipitation maxima formed along the Yeongdong coastal region rather than over the mountain slope and ridge top during. The numerical simulation with a 4-kin horizontal grid spacing and 43 levels reproduces very well the narrow snowband located off the eastern Korean coast, away from, instead of over, the Yeongdong coastal mountain range. The general evolution of the snowband agrees quite well with radar observations, while the water-equivalent precipitation amount agrees reasonably well with radar precipitation estimate. The simulation results clearly show that the snow band developed due to the lifting by a coastal front that developed because of the damming of cold air against the eastern slope of the coastal mountain range. The damming was enhanced by the advection of cold air by a tow-level mountain-parallel jet from the north, formed due to geostrophic adjustment as the on-shore upslope air was decelerated by the mountain blocking. As the onshore flow weakened later due to synoptic-scale flow pattern change, the cold front propagated off shore and the precipitation dissipated.展开更多
基金supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MEST)(Grant No. 2011-0013879)supported by NSF (Grant Nos. AGS-0802888,AGS-1046171,and EEC-0313747)
文摘A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are used to understand the snowfall process, including why the precipitation maxima formed along the Yeongdong coastal region rather than over the mountain slope and ridge top during. The numerical simulation with a 4-kin horizontal grid spacing and 43 levels reproduces very well the narrow snowband located off the eastern Korean coast, away from, instead of over, the Yeongdong coastal mountain range. The general evolution of the snowband agrees quite well with radar observations, while the water-equivalent precipitation amount agrees reasonably well with radar precipitation estimate. The simulation results clearly show that the snow band developed due to the lifting by a coastal front that developed because of the damming of cold air against the eastern slope of the coastal mountain range. The damming was enhanced by the advection of cold air by a tow-level mountain-parallel jet from the north, formed due to geostrophic adjustment as the on-shore upslope air was decelerated by the mountain blocking. As the onshore flow weakened later due to synoptic-scale flow pattern change, the cold front propagated off shore and the precipitation dissipated.