The CVI (coastal vulnerability index) was developed and used to assess the vulnerability of the coastline of the Kingdom of Bahrain main islands to future SLR (sea level rise). A total of 717 km of the coastline w...The CVI (coastal vulnerability index) was developed and used to assess the vulnerability of the coastline of the Kingdom of Bahrain main islands to future SLR (sea level rise). A total of 717 km of the coastline was evaluated. Six spatial factors acting on the coastal area: erosion/accretion patterns (shoreline change), topography (elevation above mean sea level), geology, geomorphology, slope, and mean sea level rise were incorporated and ranked to develop the CVI. This index was classified into four levels of vulnerability: low, moderate, high, and very high. Vulnerable hotspots are located along the central portions of the western and eastern coastlines. The vulnerability of these areas is mostly driven by their characteristically shallow coastal slopes, low elevations, and erosion-prone nature of the sandy soils presents, comprising about 54 km of the studied shoreline. Another 33 km of coastline were classified as highly vulnerable and located along the eastern coast. In addition, the western coast of the southern tip of the main island (Bahrain) was also classified as a highly vulnerable shoreline. Twenty-two km was classified as the moderate vulnerable. The remaining coastal areas were classified as low to moderately vulnerable comprising about 608 km of the total length of the coastline. Identifying those hotspots susceptible to SLR is essential for more effective coastal zone management and to help in reducing the impacts of SLR on both infrastructure and human beings.展开更多
This study assesses the vulnerable state of the 566-km Ivorian coastal area using the physical (geomorphology, coastal slope, coastal retreat rate, relative sea level rise and wave/Tide energy) and socio-economic (coa...This study assesses the vulnerable state of the 566-km Ivorian coastal area using the physical (geomorphology, coastal slope, coastal retreat rate, relative sea level rise and wave/Tide energy) and socio-economic (coastal population density, harbor, airport, road, land use and protected area) factors as indicators. This enabled an Integrated Coastal Vulnerability Index to be determined for the Ivorian coastal zone. This Index could be defined as the weighted average of indexes based on physical and socio-economic factors. The study revealed that vulnerability of the western and the eastern coastlines of Cote d’Ivoire are strongly influenced by human activities, while physical forcing affects significantly the vulnerability of the central section. The relative vulnerability of the different sections depends also strongly on the geomorphology, wave energy, coastal population density and land use factors. The west and central sections of the coastline are more resilient than the eastern section when integrating physical and socio-economic factors. The Integrated Coastal Vulnerability Index, based on physical and socio-economic factors, appears to be more appropriate for coastal vulnerability assessment. These results could be useful in the development of adaptation strategies to increase the resilience of this coastal area and then extended for West Africa Coastal Areas Management.展开更多
Coastal areas of the Gulf of Guinea experience accelerated degradation as a result of erosion and flooding associated with intensification of extreme marine-meteorological phenomena. The coastal erosion process, espec...Coastal areas of the Gulf of Guinea experience accelerated degradation as a result of erosion and flooding associated with intensification of extreme marine-meteorological phenomena. The coastal erosion process, especially on the sandy or muddy littoral, constitutes one of the main factors of the degradation of the Gulf of the Guinean coast. These risks, which are still poorly studied, could increase over the coming decades because of climate change and the human activities that exacerbate them. Data related to ocean forcing (tide, wave, and sea level anomaly), to hydrologic parameter (rainfall) and to the state (geomorphology, coastal slope, and rate of coastal retreat) of the coast were analyzed by several statistical methods and a numerical vulnerability model to map the vulnerability of the different coastlines of this region. The results showed that the vulnerability of these coastal areas is influenced by geomorphology, tide, waves and rainfall intensity. 24.34% and 37% of the entire coast are of low and moderate vulnerability respectively. While 26.98% and 11.66% are of high and very high vulnerability respectively. This information could facilitate developing sustainable policies to effectively manage hazards in this coastal zone.展开更多
Using Geography Information System (GIS) tools and remote sensing data in assessing the level of vulnerability of agricultural production activities in the coastal area has become more efficient in the recent years. T...Using Geography Information System (GIS) tools and remote sensing data in assessing the level of vulnerability of agricultural production activities in the coastal area has become more efficient in the recent years. This research has identified the sensitivity index (S) (including the traffic access index;the impact of residential areas;the impacts of industrial zones;the community dependence level), exposure index (E) (the sea level rises to 2100;the temperature change to 2100), the adaptable capacity index (AC) (slope;morphology), thereby synthesizing the vulnerability index (V). Based on the indexes to calculate vulnerability, the high to very high vulnerability area is 37,081.44 ha, accounting for 68.09%;the average vulnerability level is 15,286.49 ha, accounting for 28.07%;the low to very low vulnerability level with an area is 2087.82 ha, accounting for 3.84% of the total area. With a high and very high vulnerability accounting for 68.09%, there will be great influences on the lives of resident in the area, especially agricultural production.展开更多
The Sultanate of Oman has a long coastline extending for about 3165 km including a number of bays and islands. Oman’s coastline borders the Arabian Gulf, the Sea of Oman and the Arabian Sea. Most of this coastline is...The Sultanate of Oman has a long coastline extending for about 3165 km including a number of bays and islands. Oman’s coastline borders the Arabian Gulf, the Sea of Oman and the Arabian Sea. Most of this coastline is soft and low laying shore subject to the dynamics of sediment transport and the landward retreat of the shoreline, caused by anthropogenic factors and sea level rise associated with climate change. This paper aims to assess the vulnerability of the entire Omani coastal zone to the expected sea level rise and storm surge. Methodology is based on applying Coastal Vulnerability Index (CVI) to identify clusters of high vulnerability areas according to their sensitivity and dynamic nature and increased risk resulted from seal level rise, erosion and extreme weather events. The coastal line of the governorates of Al Batinah, Muscat and Al-Wusta has scored highly due to possessing similar physical attributes. Based on that assessment a coastal vulnerability database utilizing GIS was created to help stakeholders involved in the coastal management to make better decisions.展开更多
A model is traced to evaluate and enumerate the significance of vulnerability to seawater intrusion due to excessive ground water withdrawals and some anthropogenic activities at coastal aquifers. So taking these issu...A model is traced to evaluate and enumerate the significance of vulnerability to seawater intrusion due to excessive ground water withdrawals and some anthropogenic activities at coastal aquifers. So taking these issues into account few thematic maps which were influencing the saline water intrusion were prepared and overlaid using Geographical Information Systems (GIS). Based on GALDIT method, the groundwater vulnerability cartography has been assessed. To reckon the GALDIT index it requires six parameters like aquifer type, aquifer hydraulic conductivity, depth to groundwater level (AMSL), distance from the shore, impact of existing status of seawater intrusion and thickness of the aquifer. This GALDIT is the indicator scores and summing them and dividing by the total weight for determining the relative role of each one. Apart from this an identification of saltwater intruded area is done by using indicators of saltwater intrusion like Cl/(HCO<sub>3</sub> + CO<sub>3</sub>) ratio and Na/Cl ratio. The vulnerability areas are classified as moderate with an area of 147.31 sq. km and low covering an area of 168.72 sq. km respectively based on the thematic maps. The final thematic map can be used for management of the coastal ground water resources.展开更多
Previous studies on typhoon disaster risk zoning in China have focused on individual provinces or small-scale areas and lack county-level results.In this study,typhoon disaster risk zoning is conducted for China’s co...Previous studies on typhoon disaster risk zoning in China have focused on individual provinces or small-scale areas and lack county-level results.In this study,typhoon disaster risk zoning is conducted for China’s coastal area,based on data at the county level.Using precipitation and wind data for China and typhoon disaster and social data at the county level for China’s coastal area from 2004 to 2013,first we analyze the characteristics of typhoon disasters in China’s coastal area and then develop an intensity index of factors causing typhoon disasters and a comprehensive social vulnerability index.Finally,by combining the two indices,we obtain a comprehensive risk index for typhoon disasters and conduct risk zoning.The results show that the maximum intensity areas are mainly the most coastal areas of both Zhejiang and Guangdong,and parts of Hainan Island,which is similar to the distribution of typhoon disasters.The maximum values of vulnerability in the northwest of Guangxi,parts of Fujian coastal areas and parts of the Shandong Peninsula.The comprehensive risk index generally decreases from coastal areas to inland areas.The high-risk areas are mainly distributed over Hainan Island,south-western Guangdong,most coastal Zhejiang,the coastal areas between Zhejiang and Fujian and parts of the Shandong Peninsula.展开更多
文摘The CVI (coastal vulnerability index) was developed and used to assess the vulnerability of the coastline of the Kingdom of Bahrain main islands to future SLR (sea level rise). A total of 717 km of the coastline was evaluated. Six spatial factors acting on the coastal area: erosion/accretion patterns (shoreline change), topography (elevation above mean sea level), geology, geomorphology, slope, and mean sea level rise were incorporated and ranked to develop the CVI. This index was classified into four levels of vulnerability: low, moderate, high, and very high. Vulnerable hotspots are located along the central portions of the western and eastern coastlines. The vulnerability of these areas is mostly driven by their characteristically shallow coastal slopes, low elevations, and erosion-prone nature of the sandy soils presents, comprising about 54 km of the studied shoreline. Another 33 km of coastline were classified as highly vulnerable and located along the eastern coast. In addition, the western coast of the southern tip of the main island (Bahrain) was also classified as a highly vulnerable shoreline. Twenty-two km was classified as the moderate vulnerable. The remaining coastal areas were classified as low to moderately vulnerable comprising about 608 km of the total length of the coastline. Identifying those hotspots susceptible to SLR is essential for more effective coastal zone management and to help in reducing the impacts of SLR on both infrastructure and human beings.
文摘This study assesses the vulnerable state of the 566-km Ivorian coastal area using the physical (geomorphology, coastal slope, coastal retreat rate, relative sea level rise and wave/Tide energy) and socio-economic (coastal population density, harbor, airport, road, land use and protected area) factors as indicators. This enabled an Integrated Coastal Vulnerability Index to be determined for the Ivorian coastal zone. This Index could be defined as the weighted average of indexes based on physical and socio-economic factors. The study revealed that vulnerability of the western and the eastern coastlines of Cote d’Ivoire are strongly influenced by human activities, while physical forcing affects significantly the vulnerability of the central section. The relative vulnerability of the different sections depends also strongly on the geomorphology, wave energy, coastal population density and land use factors. The west and central sections of the coastline are more resilient than the eastern section when integrating physical and socio-economic factors. The Integrated Coastal Vulnerability Index, based on physical and socio-economic factors, appears to be more appropriate for coastal vulnerability assessment. These results could be useful in the development of adaptation strategies to increase the resilience of this coastal area and then extended for West Africa Coastal Areas Management.
文摘Coastal areas of the Gulf of Guinea experience accelerated degradation as a result of erosion and flooding associated with intensification of extreme marine-meteorological phenomena. The coastal erosion process, especially on the sandy or muddy littoral, constitutes one of the main factors of the degradation of the Gulf of the Guinean coast. These risks, which are still poorly studied, could increase over the coming decades because of climate change and the human activities that exacerbate them. Data related to ocean forcing (tide, wave, and sea level anomaly), to hydrologic parameter (rainfall) and to the state (geomorphology, coastal slope, and rate of coastal retreat) of the coast were analyzed by several statistical methods and a numerical vulnerability model to map the vulnerability of the different coastlines of this region. The results showed that the vulnerability of these coastal areas is influenced by geomorphology, tide, waves and rainfall intensity. 24.34% and 37% of the entire coast are of low and moderate vulnerability respectively. While 26.98% and 11.66% are of high and very high vulnerability respectively. This information could facilitate developing sustainable policies to effectively manage hazards in this coastal zone.
文摘Using Geography Information System (GIS) tools and remote sensing data in assessing the level of vulnerability of agricultural production activities in the coastal area has become more efficient in the recent years. This research has identified the sensitivity index (S) (including the traffic access index;the impact of residential areas;the impacts of industrial zones;the community dependence level), exposure index (E) (the sea level rises to 2100;the temperature change to 2100), the adaptable capacity index (AC) (slope;morphology), thereby synthesizing the vulnerability index (V). Based on the indexes to calculate vulnerability, the high to very high vulnerability area is 37,081.44 ha, accounting for 68.09%;the average vulnerability level is 15,286.49 ha, accounting for 28.07%;the low to very low vulnerability level with an area is 2087.82 ha, accounting for 3.84% of the total area. With a high and very high vulnerability accounting for 68.09%, there will be great influences on the lives of resident in the area, especially agricultural production.
文摘The Sultanate of Oman has a long coastline extending for about 3165 km including a number of bays and islands. Oman’s coastline borders the Arabian Gulf, the Sea of Oman and the Arabian Sea. Most of this coastline is soft and low laying shore subject to the dynamics of sediment transport and the landward retreat of the shoreline, caused by anthropogenic factors and sea level rise associated with climate change. This paper aims to assess the vulnerability of the entire Omani coastal zone to the expected sea level rise and storm surge. Methodology is based on applying Coastal Vulnerability Index (CVI) to identify clusters of high vulnerability areas according to their sensitivity and dynamic nature and increased risk resulted from seal level rise, erosion and extreme weather events. The coastal line of the governorates of Al Batinah, Muscat and Al-Wusta has scored highly due to possessing similar physical attributes. Based on that assessment a coastal vulnerability database utilizing GIS was created to help stakeholders involved in the coastal management to make better decisions.
文摘A model is traced to evaluate and enumerate the significance of vulnerability to seawater intrusion due to excessive ground water withdrawals and some anthropogenic activities at coastal aquifers. So taking these issues into account few thematic maps which were influencing the saline water intrusion were prepared and overlaid using Geographical Information Systems (GIS). Based on GALDIT method, the groundwater vulnerability cartography has been assessed. To reckon the GALDIT index it requires six parameters like aquifer type, aquifer hydraulic conductivity, depth to groundwater level (AMSL), distance from the shore, impact of existing status of seawater intrusion and thickness of the aquifer. This GALDIT is the indicator scores and summing them and dividing by the total weight for determining the relative role of each one. Apart from this an identification of saltwater intruded area is done by using indicators of saltwater intrusion like Cl/(HCO<sub>3</sub> + CO<sub>3</sub>) ratio and Na/Cl ratio. The vulnerability areas are classified as moderate with an area of 147.31 sq. km and low covering an area of 168.72 sq. km respectively based on the thematic maps. The final thematic map can be used for management of the coastal ground water resources.
基金This study was supported by the National Key R&D Program of China(Grant No.2019YFC1510205)the National Basic Research Program of China(No.2015CB452806)and the Jiangsu Collaborative Innovation Center for Climate Change.
文摘Previous studies on typhoon disaster risk zoning in China have focused on individual provinces or small-scale areas and lack county-level results.In this study,typhoon disaster risk zoning is conducted for China’s coastal area,based on data at the county level.Using precipitation and wind data for China and typhoon disaster and social data at the county level for China’s coastal area from 2004 to 2013,first we analyze the characteristics of typhoon disasters in China’s coastal area and then develop an intensity index of factors causing typhoon disasters and a comprehensive social vulnerability index.Finally,by combining the two indices,we obtain a comprehensive risk index for typhoon disasters and conduct risk zoning.The results show that the maximum intensity areas are mainly the most coastal areas of both Zhejiang and Guangdong,and parts of Hainan Island,which is similar to the distribution of typhoon disasters.The maximum values of vulnerability in the northwest of Guangxi,parts of Fujian coastal areas and parts of the Shandong Peninsula.The comprehensive risk index generally decreases from coastal areas to inland areas.The high-risk areas are mainly distributed over Hainan Island,south-western Guangdong,most coastal Zhejiang,the coastal areas between Zhejiang and Fujian and parts of the Shandong Peninsula.