In this study, a simple method for the simultaneous determination of trace metals(Cu, V, Co, Zn) in coastal seawater using the Mg(OH)2 coprecipitation inductively coupled plasma mass spectrometry(ICP-MS) was developed...In this study, a simple method for the simultaneous determination of trace metals(Cu, V, Co, Zn) in coastal seawater using the Mg(OH)2 coprecipitation inductively coupled plasma mass spectrometry(ICP-MS) was developed. This multi-element method enables the simultaneous extraction of four metals, particularly Co and V. The recoveries of Cu, Co, V and Zn after Mg(OH)2 coprecipitation were 73%, 96%, 94% and 92%, which means that our procedure was well-suited to the determination of these four trace metals. The detection limits were 3.81, 0.18, 6.09 and 1.91 nmol L-1, respectively. Then, applying this method to the simultaneous determination of these four metals in coastal water samples from the East China Sea revealed that the concentrations of Cu, Zn, Co and V were higher in bottom waters compared to water at other depths, and higher concentrations were generally observed at the Yangtze River estuary. Additionally, example vertical profiles of dissolved trace metal concentrations for the East China Sea in spring and autumn are compared. These findings indicate that Zn had the greatest seasonal variation followed by Cu, V and Co. For Zn and Co, the concentrations were higher during spring than during autumn. For Cu and V, the seasonal variation in the concentrations was opposite.展开更多
An extensive study collected in situ data along the Yellow Sea(YS) and East China Sea(ECS) to assess the radiometric properties and the concentration of the water constituents derived from Moderate Resolution Imaging ...An extensive study collected in situ data along the Yellow Sea(YS) and East China Sea(ECS) to assess the radiometric properties and the concentration of the water constituents derived from Moderate Resolution Imaging Spectroradiometer(MODIS). Thirteen high quality match-ups were obtained for evaluating the MODIS estimates of Rrs(λ), chlorophyll a(Chl a) and concentrations of suspended particulate sediment matter(SPM). For MODIS Rrs(λ), the mean absolute percentage difference(APD) was in the range of 20%–36%, and the highest uncertainty appeared at 412 nm, whereas the band ratio of Rrs(λ) at 488 nm compared with that at 547 nm was highly consistent, with an APD of 7%. A combination of near-infrared bands and shortwave infrared wavelengths atmosphere correction algorithm(NIR-SWIR algorithm) was applied to the MODIS data, and the estimation accuracy of Rrs were improved at most of the visible spectral bands except 645 nm, 667 nm and 678 nm. Two ocean-colour empirical algorithms for Chl a estimation were applied to the processed data, the results indicated that the accuracy of the derived Chl a values was obviously improved, the four-band algorithms outperformed the other algorithm for measured and simulated datasets, and the minimum APD was 35%. The SPM was also quantified. Two regional and two coastal SPM algorithms were modified according to the in situ data. By comparison, the modified Tassan model had a higher accuracy for the application along the YS and ECS with an APD of 21%. However, given the limited match-up dataset and the potential influence of the aerosol properties on atmosphere correction, further research is required to develop additional algorithms especially for the low Chl a coastal water.展开更多
A fouling study was conducted in coastal waters southwest of the East China Sea between December 2013 and November 2014. A total of 84 species of fouling organisms belonging to 69 genera, 49 families, and 10 phyla wer...A fouling study was conducted in coastal waters southwest of the East China Sea between December 2013 and November 2014. A total of 84 species of fouling organisms belonging to 69 genera, 49 families, and 10 phyla were recorded over the entire year. The community composition was dominated by coastal warm-water species belonging to typical subtropical inner bay communities. The prosperous stage of settlement lasted from April to September, and the adhesion strength of the fouling organisms was the highest in summer. Sessile suspension feeders constituted the main core of settlement for the fouling community. Amphibalanus reticulatus was the most dominant and representative species of fouling organism, and other dominant species included Caprella equilibra, Ectopleura crocea, Anthopleura nigrescens, Stylochus ijimai, Spirobranchus kraussii, Crassostrea angulata, Perna viridis, Jassa falcata, Stenothoe valida, Sphaerozius nitidus, and Biflustra grandicella. The individuals in the fouling community showed a mutual dependence or constraint relationship due to competition for settlement space and food, and they exhibited a particular spatiotemporal distribution in accordance with adaptation to environmental factors. Temperature was the most important environmental factor determining the geographic distribution of fouling organisms. The temperature characteristics of species essentially reflect the differences in the fouling community composition in various climate zones. The species number, settlement stage, and settlement rate of fouling organisms are closely related to water temperature. Local natural environmental conditions(salinity, water currents, light, etc.) as well as human activity(such as aquaculture production) are all important factors affecting the settlement of fouling organisms.展开更多
The data of SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), installed on SeaStar, has been used to generate SSC (suspended sediment concentration) of complex and turbid coastal waters in China. In view of the problem...The data of SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), installed on SeaStar, has been used to generate SSC (suspended sediment concentration) of complex and turbid coastal waters in China. In view of the problems of the SeaDAS (SeaWiFS Data Analysis System) algorithm applied to China coastal waters, a new atmospheric correction algorithm is discussed, developed, and used for the SSC of East China coastal waters. The advantages of the new algorithm are described through the comparison of the results from different algorithms.展开更多
Based on the field data obtained during cruises on the shelf of the East China Sea from 1997 to 1999, seasonal variations of coastal upwelling on the inner shelf are discussed by using cross-shelf transect profiles an...Based on the field data obtained during cruises on the shelf of the East China Sea from 1997 to 1999, seasonal variations of coastal upwelling on the inner shelf are discussed by using cross-shelf transect profiles and horizontal distributions of chemical and hydrographic variables. Results show that the coastal upwelling was year-round, but the areas and intensities of the upwelling were quite different in season. The coastal upwelling occurred in all of the coastal areas of the region in spring and summer, but in autumn only in the area off Zhejiang Province, and in winter in the area off Fujian Prov- ince. It was the strongest in summer and the weakest in winter. Geographically, it was the strongest in the area off Zhejiang Province and the weakest in the southmost or northmost parts of the East China Sea. The estimated nutrient fluxes upward into euphotic zone through coastal upwelling were quite large, es- pecially for phosphate, which contributed significantly to primary production and improved the nutrient structure of the coastal ecosystem in the East China Sea.展开更多
Water samples were collected in the coastal area of the Changjiang Estuary on four cruises from August 2002 to May 2003. The seasonal variations of dissolved inorganic arsenic (DIAs) distributions were analyzed. The...Water samples were collected in the coastal area of the Changjiang Estuary on four cruises from August 2002 to May 2003. The seasonal variations of dissolved inorganic arsenic (DIAs) distributions were analyzed. The results showed that the distributions of DIAs were mainly influenced by Water (KSSW). The concentration of the total dissolved the terrestrial input and the intrusion of the Kuroshio Subsurface inorganic arsenic (TDIAs) decreased consecutively from winter to summer, while it increased in autumn. The distributions of TDIAs showed some relationships with salinity and suspended particulate matter (SPM). The relationships between DIAs speciation (including arsenite [ As( Ⅲ ) ] and arsenate [ As( Ⅴ ) ]), biological activity and the availabilities of the phosphate were investigated in the study area for the cruise August 2002. The ratio of As (Ⅲ)/TDIAs increased with the decrease of phosphate concentrations. In the bottom water, the As( Ⅲ )/TDIAs ratio decreased with the increasing of N/P. The concentration of TDIAs decreased 28.7% approximately after the occurrence of harmful algal blooms (HAB) because of the uptake of arsenate by algae. Further study is needed about the arsenic source/sink relationships in their vertical or horizontal profiles and the uptake mechanism during the occurrence of harmful algal blooms.展开更多
Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the ...Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.展开更多
Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shall...Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shallow gas, sand ridges, erosion ditches, scarps, irregular bedrock features, underwater shoals, buried paleo-channels, and submarine deltas. Based on the seismic profiles, we have constructed a marine geological map of these hazardous features. Shallow gas accumulations are common and occur mainly in two separate nearshore regions that cover 4613 and 3382 km^2 respectively. There are also scattered shallow gas accumulations in the offshore area, typically accompanied by paleo-channels that occur mainly in the middle of the study area. Sand ridges, erosion ditches, scarps, and irregular bedrock features are found mainly in the northeast of the study area in association with each other. In the southeastern part of the study area, the sand ridges have a linear form and trend NW–SE, representing the western part of the linear sand ridges in the East China Sea. The maximum slope gradient is 1?, which suggests that this area is prone to landslides. These hazardous marine geological features are important to marine and engineering activities in this region.展开更多
Cross-shelf transport is important due to its role in the transport of nutrients, larvae, sediments, and pollutants. The role of coastal trapped waves(CTWs) and their contribution to the cross-shelf transport is prese...Cross-shelf transport is important due to its role in the transport of nutrients, larvae, sediments, and pollutants. The role of coastal trapped waves(CTWs) and their contribution to the cross-shelf transport is presently unknown. The impact of wind-driven CTWs on the structure of the cross-shelf currents and transport is investigated in the East China Sea(ECS) starting from theory. The cross-shelf currents are divided into four terms: the geostrophic balance(GB) term, the second-order wave(SOW) term, the bottom friction(BF) term and Ekman(EK) term, as well as three modes: the Kelvin wave(KW) mode, the first shelf wave(SW1) mode and the second shelf wave(SW2) mode. Comparison among these decompositions shows that(1) for the four terms, the effect of the GB and EK terms is continual, while that of the BF term is confi ned to 60–240 km of fshore, and the contribution of the SOW term can be ignored;(2) for the three modes, the KW and SW1 modes are dominant in cross-shelf transport. The results show that the total cross-shelf transport travels onshore under idealized wind stress on the order of 10^(-1), and it increases along the cross-shelf direction and peaks about-0.73 Sv at the continental shelf margin. With the increase of linear bottom friction coeffi cient, the cross-shelf transport declines with distance with the slope becoming more uniform.展开更多
On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental s...On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and there are close correlations between the high content of chlorophyll-a and the light-nutrient environment.展开更多
A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service(NMDIS).It produces a dataset package called CORA (China oc...A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service(NMDIS).It produces a dataset package called CORA (China ocean reanalysis).The regional ocean model used is based on the Princeton Ocean Model with a generalized coordinate system(POMgcs).The model is parallelized by NMDIS with the addition of the wave breaking and tidal mixing processes into model parameterizations.Data assimilation is a sequential three-dimensional variational(3D-Var) scheme implemented within a multigrid framework.Observations include satellite remote sensing sea surface temperature(SST),altimetry sea level anomaly(SLA),and temperature/salinity profiles.The reanalysis fields of sea surface height,temperature,salinity,and currents begin with January 1986 and are currently updated every year. Error statistics and error distributions of temperature,salinity and currents are presented as a primary evaluation of the reanalysis fields using sea level data from tidal gauges,temperature profiles,as well as the trajectories of Argo floats.Some case studies offer the opportunity to verify the evolution of certain local circulations.These evaluations show that the reanalysis data produced provide a good representation of the ocean processes and phenomena in the coastal waters of China and adjacent seas.展开更多
The main processes of interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. Th...The main processes of interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. These processes include the intrusion of the Kuroshio water into the shelf area of the ECS, the entrainment of the shelf water into the Kuroshio, the seasonal process in the southern shelf area of the ECS controlled alternatively by the Taiwan Strait water and the Kuroshio water intruding into the shelf area, the interaction between the Kuroshio branch water, shelf mixed water and modified coastal water in the northeastern ECS, the water-exchange between the HS and ECS and the spread of the Changjiang diluted water.展开更多
We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities...We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities of the thermohaline structure, and use the ComprehensiveOcean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes(momentum, heat, and moisture) across the air-ocean interface and the formation of the water massfeatures. After examining the major current systems and considering the local bathymetry and watermass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin,Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KC) region. Thelong term mean surface heat balance corresponds to a heat loss of 30 W m^(-2) in the ESC and CBregions, a heat loss of 65 W m^(-2) in the KC and TWC regions, and a heat gain of 15 W m^(-2) in theYS region. The surface freshwater balance is defined by precipitation minus evaporation. The annualwater loss from the surface for the five subareas ranges from 1.8 to 4 cm month^(-1). The freshwater loss from the surface should be compensated for from the river run-off. The entire watercolumn of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle withmaximum values of temperature during summer and maximum mixed layer depths during winter. However,only the surface waters of the TWC and KC regions exhibit a seasonal thermal cycle.. We also foundtwo different relations between surface salinity and the Yangtze River run-off, namely, out-of-phasein the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study thatthe summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinityplume-like structure extending offshore on average towards the northeast.展开更多
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis ...On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.展开更多
Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is com...Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.展开更多
The 454 sequencing method was used to detect bacterial diversity and community structure in the East China Sea. Overall, 149 067 optimized reads with an average length of 454 nucleotides were obtained from 17 seawater...The 454 sequencing method was used to detect bacterial diversity and community structure in the East China Sea. Overall, 149 067 optimized reads with an average length of 454 nucleotides were obtained from 17 seawater samples and fi ve sediment samples sourced in May 2011. A total of 22 phyla, 34 classes, 74 orders, 146 families, and 333 genera were identifi ed in this study. Some of them were detected for the fi rst time from the East China Sea. The estimated richness and diversity indices were both higher in the sediment samples compared with in the seawater samples. All the samples were divided by their diversity indices into four regions. Similarity analysis showed that the seawater samples could be classifi ed into six groups. The groups differed from each other and had unique community structure characteristics. It was found that different water masses in the sampling areas may have had some infl uence on the bacterial community structure. A canonical correspondence analysis revealed that seawater samples in different areas and at different depths were affected by different environmental parameters. This study will lay the foundation for future research on microbiology in the East China Sea.展开更多
POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and ...POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and observational data were used to determine the sediment concentration, volume transport, heat flux and suspended matter flux between the Yellow Sea and the East China Sea. The conclusions obtained were that the volume and heat are transported northward through the 32°N section during each season; that in winter and autumn, total suspended matter is transported southward, and is larger in winter than in autumn. The reason is that the Yellow Sea Coastal Current is strong and always contains more suspend matter in winter and autumn. The seasonal suspended matter exchange between the Yellow Sea and the East China Sea are 0.58×10 7 tons in spring, 2.81×10 7 tons in summer, -2.60×10 7 tons in autumn and -3.40×10 7 tons in winter. Net flux of suspended matter from the Yellow Sea to the East China Sea is 2.61×10 7 tons every year.展开更多
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the ...The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.展开更多
For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional...For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 41140037, 41276069)the Young Scientist Award Science Foundation of Shandong, China (BS2010HZ026)the Open Science Funding of the Key Laboratory of the First Institute of Oceanography, SOA (MESE-2011-03)
文摘In this study, a simple method for the simultaneous determination of trace metals(Cu, V, Co, Zn) in coastal seawater using the Mg(OH)2 coprecipitation inductively coupled plasma mass spectrometry(ICP-MS) was developed. This multi-element method enables the simultaneous extraction of four metals, particularly Co and V. The recoveries of Cu, Co, V and Zn after Mg(OH)2 coprecipitation were 73%, 96%, 94% and 92%, which means that our procedure was well-suited to the determination of these four trace metals. The detection limits were 3.81, 0.18, 6.09 and 1.91 nmol L-1, respectively. Then, applying this method to the simultaneous determination of these four metals in coastal water samples from the East China Sea revealed that the concentrations of Cu, Zn, Co and V were higher in bottom waters compared to water at other depths, and higher concentrations were generally observed at the Yangtze River estuary. Additionally, example vertical profiles of dissolved trace metal concentrations for the East China Sea in spring and autumn are compared. These findings indicate that Zn had the greatest seasonal variation followed by Cu, V and Co. For Zn and Co, the concentrations were higher during spring than during autumn. For Cu and V, the seasonal variation in the concentrations was opposite.
基金The National Natural Science Foundation of China under contract Nos 41506197 and 41406199the Doctoral Scientific Research Foundation of Liaoning Province under contract No.201501190the Fundamental Research Funds for the Central Universities under contract No.3132017110
文摘An extensive study collected in situ data along the Yellow Sea(YS) and East China Sea(ECS) to assess the radiometric properties and the concentration of the water constituents derived from Moderate Resolution Imaging Spectroradiometer(MODIS). Thirteen high quality match-ups were obtained for evaluating the MODIS estimates of Rrs(λ), chlorophyll a(Chl a) and concentrations of suspended particulate sediment matter(SPM). For MODIS Rrs(λ), the mean absolute percentage difference(APD) was in the range of 20%–36%, and the highest uncertainty appeared at 412 nm, whereas the band ratio of Rrs(λ) at 488 nm compared with that at 547 nm was highly consistent, with an APD of 7%. A combination of near-infrared bands and shortwave infrared wavelengths atmosphere correction algorithm(NIR-SWIR algorithm) was applied to the MODIS data, and the estimation accuracy of Rrs were improved at most of the visible spectral bands except 645 nm, 667 nm and 678 nm. Two ocean-colour empirical algorithms for Chl a estimation were applied to the processed data, the results indicated that the accuracy of the derived Chl a values was obviously improved, the four-band algorithms outperformed the other algorithm for measured and simulated datasets, and the minimum APD was 35%. The SPM was also quantified. Two regional and two coastal SPM algorithms were modified according to the in situ data. By comparison, the modified Tassan model had a higher accuracy for the application along the YS and ECS with an APD of 21%. However, given the limited match-up dataset and the potential influence of the aerosol properties on atmosphere correction, further research is required to develop additional algorithms especially for the low Chl a coastal water.
基金The National Natural Science Foundation of China under contract Nos 41176102 and 41306116
文摘A fouling study was conducted in coastal waters southwest of the East China Sea between December 2013 and November 2014. A total of 84 species of fouling organisms belonging to 69 genera, 49 families, and 10 phyla were recorded over the entire year. The community composition was dominated by coastal warm-water species belonging to typical subtropical inner bay communities. The prosperous stage of settlement lasted from April to September, and the adhesion strength of the fouling organisms was the highest in summer. Sessile suspension feeders constituted the main core of settlement for the fouling community. Amphibalanus reticulatus was the most dominant and representative species of fouling organism, and other dominant species included Caprella equilibra, Ectopleura crocea, Anthopleura nigrescens, Stylochus ijimai, Spirobranchus kraussii, Crassostrea angulata, Perna viridis, Jassa falcata, Stenothoe valida, Sphaerozius nitidus, and Biflustra grandicella. The individuals in the fouling community showed a mutual dependence or constraint relationship due to competition for settlement space and food, and they exhibited a particular spatiotemporal distribution in accordance with adaptation to environmental factors. Temperature was the most important environmental factor determining the geographic distribution of fouling organisms. The temperature characteristics of species essentially reflect the differences in the fouling community composition in various climate zones. The species number, settlement stage, and settlement rate of fouling organisms are closely related to water temperature. Local natural environmental conditions(salinity, water currents, light, etc.) as well as human activity(such as aquaculture production) are all important factors affecting the settlement of fouling organisms.
文摘The data of SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), installed on SeaStar, has been used to generate SSC (suspended sediment concentration) of complex and turbid coastal waters in China. In view of the problems of the SeaDAS (SeaWiFS Data Analysis System) algorithm applied to China coastal waters, a new atmospheric correction algorithm is discussed, developed, and used for the SSC of East China coastal waters. The advantages of the new algorithm are described through the comparison of the results from different algorithms.
基金Supported by the National Basic Research Program of China (973 Pro-gram), No. 2001CB4097
文摘Based on the field data obtained during cruises on the shelf of the East China Sea from 1997 to 1999, seasonal variations of coastal upwelling on the inner shelf are discussed by using cross-shelf transect profiles and horizontal distributions of chemical and hydrographic variables. Results show that the coastal upwelling was year-round, but the areas and intensities of the upwelling were quite different in season. The coastal upwelling occurred in all of the coastal areas of the region in spring and summer, but in autumn only in the area off Zhejiang Province, and in winter in the area off Fujian Prov- ince. It was the strongest in summer and the weakest in winter. Geographically, it was the strongest in the area off Zhejiang Province and the weakest in the southmost or northmost parts of the East China Sea. The estimated nutrient fluxes upward into euphotic zone through coastal upwelling were quite large, es- pecially for phosphate, which contributed significantly to primary production and improved the nutrient structure of the coastal ecosystem in the East China Sea.
基金This research was supported by the National Basic Research Program of China (Nos. 2001CB409703 and G1999043705) the National Natural Science Foundation of China (Nos. 40036010 and 40206017).
文摘Water samples were collected in the coastal area of the Changjiang Estuary on four cruises from August 2002 to May 2003. The seasonal variations of dissolved inorganic arsenic (DIAs) distributions were analyzed. The results showed that the distributions of DIAs were mainly influenced by Water (KSSW). The concentration of the total dissolved the terrestrial input and the intrusion of the Kuroshio Subsurface inorganic arsenic (TDIAs) decreased consecutively from winter to summer, while it increased in autumn. The distributions of TDIAs showed some relationships with salinity and suspended particulate matter (SPM). The relationships between DIAs speciation (including arsenite [ As( Ⅲ ) ] and arsenate [ As( Ⅴ ) ]), biological activity and the availabilities of the phosphate were investigated in the study area for the cruise August 2002. The ratio of As (Ⅲ)/TDIAs increased with the decrease of phosphate concentrations. In the bottom water, the As( Ⅲ )/TDIAs ratio decreased with the increasing of N/P. The concentration of TDIAs decreased 28.7% approximately after the occurrence of harmful algal blooms (HAB) because of the uptake of arsenate by algae. Further study is needed about the arsenic source/sink relationships in their vertical or horizontal profiles and the uptake mechanism during the occurrence of harmful algal blooms.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB950403)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020301)+1 种基金the National Natural Science Foundation of China(No.41176018)the Special Fund for Marine Research in the Public Interest(No.201005006)
文摘Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.
基金supported by the China-ASEAN maritime cooperation fund (Comparative Study of Holocene Sedimentary Evolution of the Yangtze River Delta and the Red River Delta)the National Natural Science Foundation of China (Nos. 41306063 and 41330964)the China Geology Survey (Nos. GZH201200506 and DD20 160145)
文摘Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shallow gas, sand ridges, erosion ditches, scarps, irregular bedrock features, underwater shoals, buried paleo-channels, and submarine deltas. Based on the seismic profiles, we have constructed a marine geological map of these hazardous features. Shallow gas accumulations are common and occur mainly in two separate nearshore regions that cover 4613 and 3382 km^2 respectively. There are also scattered shallow gas accumulations in the offshore area, typically accompanied by paleo-channels that occur mainly in the middle of the study area. Sand ridges, erosion ditches, scarps, and irregular bedrock features are found mainly in the northeast of the study area in association with each other. In the southeastern part of the study area, the sand ridges have a linear form and trend NW–SE, representing the western part of the linear sand ridges in the East China Sea. The maximum slope gradient is 1?, which suggests that this area is prone to landslides. These hazardous marine geological features are important to marine and engineering activities in this region.
基金Supported by the National Natural Science Foundation of China(Nos.41476022,41506044)the Program for Innovation Research and Entrepreneurship Team in Jiangsu Province+1 种基金the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-05)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(Nos.2013r121,2014r072)
文摘Cross-shelf transport is important due to its role in the transport of nutrients, larvae, sediments, and pollutants. The role of coastal trapped waves(CTWs) and their contribution to the cross-shelf transport is presently unknown. The impact of wind-driven CTWs on the structure of the cross-shelf currents and transport is investigated in the East China Sea(ECS) starting from theory. The cross-shelf currents are divided into four terms: the geostrophic balance(GB) term, the second-order wave(SOW) term, the bottom friction(BF) term and Ekman(EK) term, as well as three modes: the Kelvin wave(KW) mode, the first shelf wave(SW1) mode and the second shelf wave(SW2) mode. Comparison among these decompositions shows that(1) for the four terms, the effect of the GB and EK terms is continual, while that of the BF term is confi ned to 60–240 km of fshore, and the contribution of the SOW term can be ignored;(2) for the three modes, the KW and SW1 modes are dominant in cross-shelf transport. The results show that the total cross-shelf transport travels onshore under idealized wind stress on the order of 10^(-1), and it increases along the cross-shelf direction and peaks about-0.73 Sv at the continental shelf margin. With the increase of linear bottom friction coeffi cient, the cross-shelf transport declines with distance with the slope becoming more uniform.
文摘On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and there are close correlations between the high content of chlorophyll-a and the light-nutrient environment.
文摘A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service(NMDIS).It produces a dataset package called CORA (China ocean reanalysis).The regional ocean model used is based on the Princeton Ocean Model with a generalized coordinate system(POMgcs).The model is parallelized by NMDIS with the addition of the wave breaking and tidal mixing processes into model parameterizations.Data assimilation is a sequential three-dimensional variational(3D-Var) scheme implemented within a multigrid framework.Observations include satellite remote sensing sea surface temperature(SST),altimetry sea level anomaly(SLA),and temperature/salinity profiles.The reanalysis fields of sea surface height,temperature,salinity,and currents begin with January 1986 and are currently updated every year. Error statistics and error distributions of temperature,salinity and currents are presented as a primary evaluation of the reanalysis fields using sea level data from tidal gauges,temperature profiles,as well as the trajectories of Argo floats.Some case studies offer the opportunity to verify the evolution of certain local circulations.These evaluations show that the reanalysis data produced provide a good representation of the ocean processes and phenomena in the coastal waters of China and adjacent seas.
基金National Thematic Project of Marine SurveysNational Major Fundamental ResearchDevelopment Project of China under contract No.G1999-043802.
文摘The main processes of interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. These processes include the intrusion of the Kuroshio water into the shelf area of the ECS, the entrainment of the shelf water into the Kuroshio, the seasonal process in the southern shelf area of the ECS controlled alternatively by the Taiwan Strait water and the Kuroshio water intruding into the shelf area, the interaction between the Kuroshio branch water, shelf mixed water and modified coastal water in the northeastern ECS, the water-exchange between the HS and ECS and the spread of the Changjiang diluted water.
文摘We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities of the thermohaline structure, and use the ComprehensiveOcean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes(momentum, heat, and moisture) across the air-ocean interface and the formation of the water massfeatures. After examining the major current systems and considering the local bathymetry and watermass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin,Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KC) region. Thelong term mean surface heat balance corresponds to a heat loss of 30 W m^(-2) in the ESC and CBregions, a heat loss of 65 W m^(-2) in the KC and TWC regions, and a heat gain of 15 W m^(-2) in theYS region. The surface freshwater balance is defined by precipitation minus evaporation. The annualwater loss from the surface for the five subareas ranges from 1.8 to 4 cm month^(-1). The freshwater loss from the surface should be compensated for from the river run-off. The entire watercolumn of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle withmaximum values of temperature during summer and maximum mixed layer depths during winter. However,only the surface waters of the TWC and KC regions exhibit a seasonal thermal cycle.. We also foundtwo different relations between surface salinity and the Yangtze River run-off, namely, out-of-phasein the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study thatthe summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinityplume-like structure extending offshore on average towards the northeast.
基金The Innovation Project of Chinese Academy of Sciences under contract No.KZCX2-EW-209the National Basic Research Program(973 Program)of China under contract No.2009CB421205
文摘On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.
文摘Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.
基金Supported by the National Basic Research Program of China(973 Program)(No.2011CB409804)the National Natural Science Foundation of China(No.41121064)
文摘The 454 sequencing method was used to detect bacterial diversity and community structure in the East China Sea. Overall, 149 067 optimized reads with an average length of 454 nucleotides were obtained from 17 seawater samples and fi ve sediment samples sourced in May 2011. A total of 22 phyla, 34 classes, 74 orders, 146 families, and 333 genera were identifi ed in this study. Some of them were detected for the fi rst time from the East China Sea. The estimated richness and diversity indices were both higher in the sediment samples compared with in the seawater samples. All the samples were divided by their diversity indices into four regions. Similarity analysis showed that the seawater samples could be classifi ed into six groups. The groups differed from each other and had unique community structure characteristics. It was found that different water masses in the sampling areas may have had some infl uence on the bacterial community structure. A canonical correspondence analysis revealed that seawater samples in different areas and at different depths were affected by different environmental parameters. This study will lay the foundation for future research on microbiology in the East China Sea.
文摘POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and observational data were used to determine the sediment concentration, volume transport, heat flux and suspended matter flux between the Yellow Sea and the East China Sea. The conclusions obtained were that the volume and heat are transported northward through the 32°N section during each season; that in winter and autumn, total suspended matter is transported southward, and is larger in winter than in autumn. The reason is that the Yellow Sea Coastal Current is strong and always contains more suspend matter in winter and autumn. The seasonal suspended matter exchange between the Yellow Sea and the East China Sea are 0.58×10 7 tons in spring, 2.81×10 7 tons in summer, -2.60×10 7 tons in autumn and -3.40×10 7 tons in winter. Net flux of suspended matter from the Yellow Sea to the East China Sea is 2.61×10 7 tons every year.
基金supported by National Basic Research Program of China(973 Program,2010CB428904)
文摘The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2005CB422300,2007CB411804,2010CB428904)the National Natural Science Foundation of China (Nos. 40976001,40940025,41006002)+2 种基金Tianjin Municipal Science and Technology Commission Project (No. 09JCYBJC07400)the "111 Project" (No.B07036)the Program for New Century Excellent Talents in University (No. NECT-07-0781)
文摘For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS.