Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s...Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.展开更多
With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important ro...With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.展开更多
Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dy...Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dynamics of aquaculture ponds is of utmost importance for sustainable economic development and scientific management of land and water resources in the coastal area. An object-oriented classification approach was applied to Landsat images acquired over three decades to investigate the long-term change of aquaculture ponds in the coastal region of the Yellow River Delta. The results indicated that the aquaculture ponds in the study area undergone a sharp expansion from 40.38 km^2 in 1983 to 1406.89 km^2 in 2015, and the fast expansion occurred during the period of 2010–2015 and 1990–2000. Natural wetlands, especially mudflat, and cropland were main land use types contributing to the increase of aquaculture ponds. The patches of aquaculture ponds were consequently prevalence in the north of the Yellow River Estuary and landscape metrics indicated an increase of the aquaculture ponds of the study area in the quantity and complexity. The expansion of aquaculture ponds inevitably had negative effects on the coastal environment, including loss of natural wetlands, water pollution and land subsidence, etc. The results from this study provide baseline data and valuable information for efficiently planning and managing aquaculture practices and for effectively implementing adequate regulations and protection measures.展开更多
Coastal wetlands in the Yellow River Delta are typical new wetland ecosystems in warm temperate zone. In recent years, influenced by natural and human factors, these coastal wetlands in the Yellow River Delta have und...Coastal wetlands in the Yellow River Delta are typical new wetland ecosystems in warm temperate zone. In recent years, influenced by natural and human factors, these coastal wetlands in the Yellow River Delta have undergone changes of landscape fragmentation, vegetation degradation, pollution, species reduction, and harmful exotic species invasion. These changes have influenced sustainable and healthy development of marine economy of the Yellow River Delta. To protect natural ecological environment of the Yellow River Delta, the authors recommended that it should establish and improve policies, laws and regulations of wetland protection; carry out wetland resource investigation and assessment and monitoring; strengthen comprehensive protection and control of wetland; reduce wetland degradation and promote sustainable use of wetland.展开更多
A coastal historical evolution of the Yangtze River Delta was discussed in this paper on the basis of the historical data of the coastal zone and an estimation was made for the future change of the coast The emphasi...A coastal historical evolution of the Yangtze River Delta was discussed in this paper on the basis of the historical data of the coastal zone and an estimation was made for the future change of the coast The emphasis was put on the future climate change that will have influence on the sea wall, coastal navigation and freshwater resources in the Delta It was also pointed out that the global warming and precipitation increase in the Yangtze River Valley may exert more impact on the zone In addition, some measures describing how to adapt to the climate change and reduce its impact were put forward展开更多
The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problem...The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.展开更多
Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the l...Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the light of the topography and section depth, and the corresponding dynamics of wave and current. Results indicate that the protruding topography left after the Diaokou River distributary was abandoned is the main cause of strong coastal erosion. Further research suggests that waves start up the sediment and the tidal current transports it, and the waves and tidal current are combined to be the dominant dynamic mechanism of coastal erosion, in which the tidal residual current takes and transports the sediment outward, thus causing the sediment to wane in the coast.展开更多
Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow ...Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta,China.We calculated the hydrological connectivity based on the hydraulic resistance and graph theory,and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ0‒0.03,Ⅱ0.03‒0.06,Ⅲ0.06‒0.12,Ⅳ0.12‒0.39).The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018,which concentrated in the mainstream of the Yellow River and the tidal creek.High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity fromⅠtoⅢgradient and decreased inⅣgradient.The highest soil total carbon storage of 0‒30 cm depth was 5172.34 g/m^(2),and organic carbon storage 2764.31 g/m^(2)inⅢgradient.The hydrological connectivity changed with temporal and spatial change during 2007‒2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta.The results indicated that appropriate hydrological connectivity,i.e.0.08,could effectively promote soil carbon storage.展开更多
The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes o...The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes of coastal landscape pattern under the influence of artificial dykes for the protection and management of coastal wetland.Our study aimed to reveal the quantitative characteristics of the coastal wetland landscape and its spatial-temporal dynamics under the influence of artificial dykes in the Yellow River delta(YRD).It was analyzed by the methods of the statistical analysis of landscape structure,five selected landscape indices and the changes of spatial centroids of three typical wetland types,including reed marshes,tidal fiats and aquaculture-salt fields.The results showed that:(1)Reduction of wetland area,especially the degradation of natural wetlands,had been the principal problem since the dykes were constructed in the YRD.The dykes created conditions for the development of artificial wetlands.However,the new born artificial wetlands were still less than the vanished natural wetlands.(2)Compared with the open area,the building of artificial dykes significantly speeded up the changes of landscape patterns and the aggravation of the landscape fragmentation in the closed area.(3)The changes of area-weighted centroids of three typical wetland landscapes were greatly affected by dykes,and the movement of the centroid of the aquaculture-salt field was very sensitive to the dykes constructed in the corresponding period.展开更多
[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant...[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant and high-yielding wheat varieties (lines) were introduced, and they were cultivated in the saline soil with total salt content of 3-4 g/kg with Dekang 961 as the control. [Result] The yields of Jinan 18, Yanjian 14 and Shanrong 3 were all significantly higher than that of Dekang 961 (P〈0.05). These three varieties (lines) all ripen before June 13 with moderate growth period that does not affect the seeding of next-season crop. [Conclusion] Jinan 18, Yanjian 14 and Shanrong 3 are suitable for planting in light and median saline soil in the Yellow River Delta.展开更多
Taking the Yellow River Delta for example, this paper applied remote sensing and GIS to explore land use changes in the local area from 1980 to 2010. The results showed that arable land, and urban and rural constructi...Taking the Yellow River Delta for example, this paper applied remote sensing and GIS to explore land use changes in the local area from 1980 to 2010. The results showed that arable land, and urban and rural construction land were major land use types in the Yellow River Delta, unused land also took a large ratio; land use changes occurred mainly in coastal regions, in terms of change matrix, 25.46% of the grassland was reclaimed as arable land, unused land also witnessed great changes, specifi cally, 11.14% turned to arable land, 23.25% to construction land. This study provided references for the land use planning and development of the local area.展开更多
The coastal wetlands of the Yellow River Delta(YRD)in China are crucial for their valuable resources,environmental significance,and economic contributions.However,these wetlands are also vulnerable to the dual threats...The coastal wetlands of the Yellow River Delta(YRD)in China are crucial for their valuable resources,environmental significance,and economic contributions.However,these wetlands are also vulnerable to the dual threats of climate change and human disturbances.Despite substantial attention to the historical shifts in YRD's coastal wetlands,uncertainties remain regarding their future trajectory in the face of compound risks from climate change and anthropogenic activities.Based on a range of remote sensing data sources,this study undertakes a comprehensive investigation into the evolution of YRD's coastal wetlands between 2000 and 2020.Subsequently,the potential fate of coastal wetlands is thoroughly analyzed through the Land Use/Cover Change(LUCC)simulation using System Dynamic-Future Land Use Simulation(SD-FLUS)model and the extreme water levels projection integrated future sea-level rise,storm surge,and astronomical high tide in 2030,2050,and 2100 under scenarios of SSP1-2.6,SSP2-4.5,and SSP5-8.5.Results revealed that YRD's coastal wetlands underwent a marked reduction,shrinking by 1688.72 km²from 2000 to 2020.This decline was mostly attributed to the substantial expansion in the areas of artificial wetlands(increasing by 823.78 km2),construction land(increasing by 767.71 km²),and shallow water(increasing by 274.58 km²).Looking ahead to 2030-2100,the fate of coastal wetlands appears to diverge based on different scenarios.Under the SSP1-2.6 scenario,the area of coastal wetland is projected to experience considerable growth.In contrast,the SSP5-8.5 scenario anticipates a notable decrease in coastal wetlands.Relative to the inundated area suffered from the current extreme water levels,the study projects a decrease of 6.8%-10.6%in submerged coastal wetlands by 2030 and 9.4%-18.2%by 2050 across all scenarios.In 2100,these percentages are projected to decrease by 0.4%(SSP2-4.5)and 27.1%(SSP5-8.5),but increase by 35.7%(SSP1-2.6).Results suggest that coastal wetlands in the YRD will face a serious compound risk from climate change and intensified human activities in the future,with climate change being the dominant factor.More effcient and forward-looking measures must be implemented to prioritize the conservation and management of coastal wetland ecosystems to address the challenges,especially those posed by climate change.展开更多
We analyzed the characteristics and trends of land-use change in and near the coastal zone of the Yangtze River Delta(YRD) during five periods(1995, 2000 2005, 2010, and 2015) using remotely sensed Landsat imagery. Us...We analyzed the characteristics and trends of land-use change in and near the coastal zone of the Yangtze River Delta(YRD) during five periods(1995, 2000 2005, 2010, and 2015) using remotely sensed Landsat imagery. Using automatic supervised classification combined with visual interpretation, we obtained land-use information for five study areas(Nantong, Shanghai, Jiaxing, Ningbo, and Zhoushan). Significant land-use changes have occurred in this area between 1995 and 2015, characterized in particular by large reductions in cultivated land and rapid increases in urbanized land. In addition, land reclamation was very active in this period as an effective supplement to the increased demand for land development: since 1995, 1622 km^2 of land was reclaimed from near-coastal regions in the study area. This increase in urbanization was jointly driven by population, economic, transportation, and policy factors. Urban areas expanded from the center outward in concentric rings, with infrastructure guiding the radial expansion of development along transportation corridors, thus forming a network of connections. Due to the influence of national land regulation policies, the expansion rate of development in the YRD gradually diminished after 2010. This indicates that the area's resource and environmental carrying capacity has reached a saturation stage in which urbanization has transitioned from broad and incremental expansion to the intensive use of land resources.展开更多
The content of Cu,Zn in the sediments from coastal wetlands of the Yellow River Delta was determined.The results showed that:(i)The content of Cu,Zn range was 16.70-50.40 mg/kg,18.15-48.80 mg/kg,respectively.The mean ...The content of Cu,Zn in the sediments from coastal wetlands of the Yellow River Delta was determined.The results showed that:(i)The content of Cu,Zn range was 16.70-50.40 mg/kg,18.15-48.80 mg/kg,respectively.The mean content of Cu,Zn was 31.12mg/kg,36.74 mg/kg,respectively.Compared with the soil environmental background values of Shandong Province,the content of Cu was excessive,while the content of Zn was below the background.(ii)The concentrations of Cu,Zn in sediment in the coast of the Yellow River Delta were higher than in the other two areas.(iii)Vertical distribution characteristics of the concentrations of Cu,Zn were increasing with depth.The maximum content of Cu,Zn was 80-100 cm,in general,the content of Cu,Zn in the bottom sediments was higher than that in the surface sediments.The growth and decline trends of Zn in Tamarix and Suaeda areas were much the same and all higher than in the Phragmites communis area.(iv)The distribution characteristics of Cu concentration in different vegetation cover in sediment is Suaeda>Phragmites communis>Tamarix,which reflected different effects on retention of Cu in the sediments because of the different vegetation types.The highest content of Zn in the 0-20 cm sediments in Tamarix area was 44.07 mg/kg.展开更多
基金Under the auspices of Natural Science Foundation of China(No.U2106209,42071126)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050202)International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)。
文摘Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.
基金Under the auscpices of Shandong Provincial Natural Science Foundation (No.ZR2020QD090)Research Funds of Beijing VMinFull Limted (No.VMF2021RS)+1 种基金National Natural Science Foundation of China (No.42176221)Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YICE351030601)。
文摘With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.
基金Under the auspices of National Program on Key Basic Research Project(No.2013CB430401)
文摘Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dynamics of aquaculture ponds is of utmost importance for sustainable economic development and scientific management of land and water resources in the coastal area. An object-oriented classification approach was applied to Landsat images acquired over three decades to investigate the long-term change of aquaculture ponds in the coastal region of the Yellow River Delta. The results indicated that the aquaculture ponds in the study area undergone a sharp expansion from 40.38 km^2 in 1983 to 1406.89 km^2 in 2015, and the fast expansion occurred during the period of 2010–2015 and 1990–2000. Natural wetlands, especially mudflat, and cropland were main land use types contributing to the increase of aquaculture ponds. The patches of aquaculture ponds were consequently prevalence in the north of the Yellow River Estuary and landscape metrics indicated an increase of the aquaculture ponds of the study area in the quantity and complexity. The expansion of aquaculture ponds inevitably had negative effects on the coastal environment, including loss of natural wetlands, water pollution and land subsidence, etc. The results from this study provide baseline data and valuable information for efficiently planning and managing aquaculture practices and for effectively implementing adequate regulations and protection measures.
基金Supported by the Open Research Fund Program of the Key Laboratory of Marine Ecology and Environmental Science and Engineering,SOA (MESE-2012-04)the Special Funds Projects for Public Welfare of National Ocean Industries (201105005)
文摘Coastal wetlands in the Yellow River Delta are typical new wetland ecosystems in warm temperate zone. In recent years, influenced by natural and human factors, these coastal wetlands in the Yellow River Delta have undergone changes of landscape fragmentation, vegetation degradation, pollution, species reduction, and harmful exotic species invasion. These changes have influenced sustainable and healthy development of marine economy of the Yellow River Delta. To protect natural ecological environment of the Yellow River Delta, the authors recommended that it should establish and improve policies, laws and regulations of wetland protection; carry out wetland resource investigation and assessment and monitoring; strengthen comprehensive protection and control of wetland; reduce wetland degradation and promote sustainable use of wetland.
文摘A coastal historical evolution of the Yangtze River Delta was discussed in this paper on the basis of the historical data of the coastal zone and an estimation was made for the future change of the coast The emphasis was put on the future climate change that will have influence on the sea wall, coastal navigation and freshwater resources in the Delta It was also pointed out that the global warming and precipitation increase in the Yangtze River Valley may exert more impact on the zone In addition, some measures describing how to adapt to the climate change and reduce its impact were put forward
文摘The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.
文摘Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the light of the topography and section depth, and the corresponding dynamics of wave and current. Results indicate that the protruding topography left after the Diaokou River distributary was abandoned is the main cause of strong coastal erosion. Further research suggests that waves start up the sediment and the tidal current transports it, and the waves and tidal current are combined to be the dominant dynamic mechanism of coastal erosion, in which the tidal residual current takes and transports the sediment outward, thus causing the sediment to wane in the coast.
基金Under the auspices of the National Key Research and Development Program of China(No.2017YFC0505903)College Student Research and Career-creation Program of China(No.201810022070)。
文摘Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta,China.We calculated the hydrological connectivity based on the hydraulic resistance and graph theory,and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ0‒0.03,Ⅱ0.03‒0.06,Ⅲ0.06‒0.12,Ⅳ0.12‒0.39).The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018,which concentrated in the mainstream of the Yellow River and the tidal creek.High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity fromⅠtoⅢgradient and decreased inⅣgradient.The highest soil total carbon storage of 0‒30 cm depth was 5172.34 g/m^(2),and organic carbon storage 2764.31 g/m^(2)inⅢgradient.The hydrological connectivity changed with temporal and spatial change during 2007‒2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta.The results indicated that appropriate hydrological connectivity,i.e.0.08,could effectively promote soil carbon storage.
基金supported by the Open Fund for Field Stations of Institute of Geographic Sciences and Natural Resources Research,CAS and the Ocean Public Welfare Scientific Research Project(Grant No.201105020)
文摘The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes of coastal landscape pattern under the influence of artificial dykes for the protection and management of coastal wetland.Our study aimed to reveal the quantitative characteristics of the coastal wetland landscape and its spatial-temporal dynamics under the influence of artificial dykes in the Yellow River delta(YRD).It was analyzed by the methods of the statistical analysis of landscape structure,five selected landscape indices and the changes of spatial centroids of three typical wetland types,including reed marshes,tidal fiats and aquaculture-salt fields.The results showed that:(1)Reduction of wetland area,especially the degradation of natural wetlands,had been the principal problem since the dykes were constructed in the YRD.The dykes created conditions for the development of artificial wetlands.However,the new born artificial wetlands were still less than the vanished natural wetlands.(2)Compared with the open area,the building of artificial dykes significantly speeded up the changes of landscape patterns and the aggravation of the landscape fragmentation in the closed area.(3)The changes of area-weighted centroids of three typical wetland landscapes were greatly affected by dykes,and the movement of the centroid of the aquaculture-salt field was very sensitive to the dykes constructed in the corresponding period.
文摘[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant and high-yielding wheat varieties (lines) were introduced, and they were cultivated in the saline soil with total salt content of 3-4 g/kg with Dekang 961 as the control. [Result] The yields of Jinan 18, Yanjian 14 and Shanrong 3 were all significantly higher than that of Dekang 961 (P〈0.05). These three varieties (lines) all ripen before June 13 with moderate growth period that does not affect the seeding of next-season crop. [Conclusion] Jinan 18, Yanjian 14 and Shanrong 3 are suitable for planting in light and median saline soil in the Yellow River Delta.
基金Sponsored by Shandong Provincial Natural Science Fund(ZR2011DQ018)Scientific Research Fund of "Young Talents Innovation Project" of Binzhou University(BZXYQNLG200717)
文摘Taking the Yellow River Delta for example, this paper applied remote sensing and GIS to explore land use changes in the local area from 1980 to 2010. The results showed that arable land, and urban and rural construction land were major land use types in the Yellow River Delta, unused land also took a large ratio; land use changes occurred mainly in coastal regions, in terms of change matrix, 25.46% of the grassland was reclaimed as arable land, unused land also witnessed great changes, specifi cally, 11.14% turned to arable land, 23.25% to construction land. This study provided references for the land use planning and development of the local area.
基金support from the National Natural Science Foundation of China (41901133,41901016,41975100)Seed project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (YICE351030601)+1 种基金Special Project for Compilation of the Fourth National Assessment Report on Climate Change of the Ministry of Science and Technology (210YBXM201810-8002)Youth Open Project of China Meteorological Administration Key Laboratory for Climate Prediction Studies (CMA-LCPS-23-04).
文摘The coastal wetlands of the Yellow River Delta(YRD)in China are crucial for their valuable resources,environmental significance,and economic contributions.However,these wetlands are also vulnerable to the dual threats of climate change and human disturbances.Despite substantial attention to the historical shifts in YRD's coastal wetlands,uncertainties remain regarding their future trajectory in the face of compound risks from climate change and anthropogenic activities.Based on a range of remote sensing data sources,this study undertakes a comprehensive investigation into the evolution of YRD's coastal wetlands between 2000 and 2020.Subsequently,the potential fate of coastal wetlands is thoroughly analyzed through the Land Use/Cover Change(LUCC)simulation using System Dynamic-Future Land Use Simulation(SD-FLUS)model and the extreme water levels projection integrated future sea-level rise,storm surge,and astronomical high tide in 2030,2050,and 2100 under scenarios of SSP1-2.6,SSP2-4.5,and SSP5-8.5.Results revealed that YRD's coastal wetlands underwent a marked reduction,shrinking by 1688.72 km²from 2000 to 2020.This decline was mostly attributed to the substantial expansion in the areas of artificial wetlands(increasing by 823.78 km2),construction land(increasing by 767.71 km²),and shallow water(increasing by 274.58 km²).Looking ahead to 2030-2100,the fate of coastal wetlands appears to diverge based on different scenarios.Under the SSP1-2.6 scenario,the area of coastal wetland is projected to experience considerable growth.In contrast,the SSP5-8.5 scenario anticipates a notable decrease in coastal wetlands.Relative to the inundated area suffered from the current extreme water levels,the study projects a decrease of 6.8%-10.6%in submerged coastal wetlands by 2030 and 9.4%-18.2%by 2050 across all scenarios.In 2100,these percentages are projected to decrease by 0.4%(SSP2-4.5)and 27.1%(SSP5-8.5),but increase by 35.7%(SSP1-2.6).Results suggest that coastal wetlands in the YRD will face a serious compound risk from climate change and intensified human activities in the future,with climate change being the dominant factor.More effcient and forward-looking measures must be implemented to prioritize the conservation and management of coastal wetland ecosystems to address the challenges,especially those posed by climate change.
基金supported by China-ASEAN maritime cooperation fund: Comparative Study of Holocene Sedimentary Evolution of the Yangtze River Delta and the Red River Deltathe Natural Science Foundation of Shandong Province, China (No. ZR2014DQ020)+1 种基金China Geological Survey Project (No. DD20160145)the National Natural Science Foundation of China (Nos. 41706074 and 41506107)
文摘We analyzed the characteristics and trends of land-use change in and near the coastal zone of the Yangtze River Delta(YRD) during five periods(1995, 2000 2005, 2010, and 2015) using remotely sensed Landsat imagery. Using automatic supervised classification combined with visual interpretation, we obtained land-use information for five study areas(Nantong, Shanghai, Jiaxing, Ningbo, and Zhoushan). Significant land-use changes have occurred in this area between 1995 and 2015, characterized in particular by large reductions in cultivated land and rapid increases in urbanized land. In addition, land reclamation was very active in this period as an effective supplement to the increased demand for land development: since 1995, 1622 km^2 of land was reclaimed from near-coastal regions in the study area. This increase in urbanization was jointly driven by population, economic, transportation, and policy factors. Urban areas expanded from the center outward in concentric rings, with infrastructure guiding the radial expansion of development along transportation corridors, thus forming a network of connections. Due to the influence of national land regulation policies, the expansion rate of development in the YRD gradually diminished after 2010. This indicates that the area's resource and environmental carrying capacity has reached a saturation stage in which urbanization has transitioned from broad and incremental expansion to the intensive use of land resources.
基金Supported by Experimental Technology Project of Binzhou University(BZXYSYXM201706)Dr.Start Funding Project of Binzhou University(2016Y33)
文摘The content of Cu,Zn in the sediments from coastal wetlands of the Yellow River Delta was determined.The results showed that:(i)The content of Cu,Zn range was 16.70-50.40 mg/kg,18.15-48.80 mg/kg,respectively.The mean content of Cu,Zn was 31.12mg/kg,36.74 mg/kg,respectively.Compared with the soil environmental background values of Shandong Province,the content of Cu was excessive,while the content of Zn was below the background.(ii)The concentrations of Cu,Zn in sediment in the coast of the Yellow River Delta were higher than in the other two areas.(iii)Vertical distribution characteristics of the concentrations of Cu,Zn were increasing with depth.The maximum content of Cu,Zn was 80-100 cm,in general,the content of Cu,Zn in the bottom sediments was higher than that in the surface sediments.The growth and decline trends of Zn in Tamarix and Suaeda areas were much the same and all higher than in the Phragmites communis area.(iv)The distribution characteristics of Cu concentration in different vegetation cover in sediment is Suaeda>Phragmites communis>Tamarix,which reflected different effects on retention of Cu in the sediments because of the different vegetation types.The highest content of Zn in the 0-20 cm sediments in Tamarix area was 44.07 mg/kg.