Single-pulse and multi-pulse damage behaviors of "standard" (with A/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800...Single-pulse and multi-pulse damage behaviors of "standard" (with A/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800-nm Ti:sapphire laser system. Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings. Meanwhile, the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%. To discuss the damage mechanism, a theoretical model based on photoionization, avalanche ionization, and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron densitv during r^ulse dHratian.展开更多
A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromag...A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film(MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror(MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.展开更多
Combining the self-stimulated Raman scattering technology and saturable absorber of Cr^(4+):YAG, a 1.17 μm c-cut Nd:GdVO_4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 ...Combining the self-stimulated Raman scattering technology and saturable absorber of Cr^(4+):YAG, a 1.17 μm c-cut Nd:GdVO_4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB_3O_5 frequency doubling crystal.展开更多
文摘Single-pulse and multi-pulse damage behaviors of "standard" (with A/4 stack structure) and "modified" (with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs, 800-nm Ti:sapphire laser system. Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses, which are explained reasonably by the standing-wave field distribution within the coatings. Meanwhile, the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%. To discuss the damage mechanism, a theoretical model based on photoionization, avalanche ionization, and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron densitv during r^ulse dHratian.
基金supported by Shanghai Municipal Natural Science Foundation(No.15ZR1415800)the Innovation Program of Shanghai Municipal Education Commission(No.14ZZ092)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film(MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror(MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.
基金supported by the National Natural Science Foundation of China(No.61108021)the Fundamental Research Funds for the Central Universities(Nos.2013JBM091 and S16JB00010)
文摘Combining the self-stimulated Raman scattering technology and saturable absorber of Cr^(4+):YAG, a 1.17 μm c-cut Nd:GdVO_4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB_3O_5 frequency doubling crystal.