Chemical conversion treatment by rare earth metal salt solution was considered as an alternative to chromium chemical conversion treatment to improve the corrosion resistance of magnesium alloys. In this study, cerium...Chemical conversion treatment by rare earth metal salt solution was considered as an alternative to chromium chemical conversion treatment to improve the corrosion resistance of magnesium alloys. In this study, cerium conversion coatings formed on AZ31 magnesium alloy were characterized and the formation mechanism was discussed. X-ray photoelectron spectroscopy (XPS) analysis showed that cerium conversion coating consisted of cerium hydroxides/oxides, in which both tetravalent cerium Ce(Ⅳ) and trivalent cerium Ce(Ⅲ) species co-existed. Cerium conversion coating was a two-layer structure. Atomic force microscopy (AFM) images revealed that the morphology of the inside layer was different from that of the outside one, which was responsible for the inherent adhesive weakness of the coating. Corrosion potential (Ecorr) measurements indicated that poor adhesion limited the improvement of the corrosion resistance of the coating. During the treating process, the increased pH value of the cerium salt solution led to the precipitation of cerium hydroxides/oxides. The formation kinetics of the coating followed a parabolic curve.展开更多
In this study, the two kinds of Fe-Al coatings were fabricated by pack aluminizing on low-carbon steel at different temperatures. The corrosion behavior of the Fe-Al coatings in artificial seawater was investigated by...In this study, the two kinds of Fe-Al coatings were fabricated by pack aluminizing on low-carbon steel at different temperatures. The corrosion behavior of the Fe-Al coatings in artificial seawater was investigated by the electrochemical and weight loss techniques. Results show that the thickness of coating layer increases with increasing aluminizing temperature. The coatings exhibit high micro-hardness and good metallurgical bonding with the substrate. In comparison with the steel substrate, the corrosion current density Ico^r of the Fe-AI coatings is always lower than that of substrate, about 1/38 or 1/33 after 2 h immersion, and 1/3 or 1/6 for 720 h immersion. As can be seen from the weight loss curve, the Fe-AI coatings show less loss than that of the substrate within 30-day immersion. The corrosion products formed on the surface of the coatings include oxides of Al, Mg, Fe and Ca, and pitting defect has also been found. The Fe-Al coating with higher content of Fe2Al5 has better corrosion resistance.展开更多
An effective approach was presented to enhance photoelectric conversion efficiency of Cu(In,Ga)Se2 (CIGS) solar cells by using modified SiO2 antireflection coatings(ARCs) to harvest more incident sunlight.Polyethylene...An effective approach was presented to enhance photoelectric conversion efficiency of Cu(In,Ga)Se2 (CIGS) solar cells by using modified SiO2 antireflection coatings(ARCs) to harvest more incident sunlight.Polyethylene glycol(PEG) and polyvinyl pyrrolidone(PVP) used as additives were introduced into silica sols to prepare SiO2-PEG and SiO2-PVP coatings in the sol-gel dip-coating process,respectively. The different effects of PEG and PVP additives on SiO2 coatings were analyzed and the antireflection performance of SiO2-PEG and SiO2-PVP coatings was investigated. The transmittance over 97% ranging from 450 nm to 700 nm with a maximum transmittance over 99.40% at about 550 nm was achieved for both SiO2-PEG2000A and SiO2-PVP0.5 coatings. The relative efficiencies of CIGS solar cells coated with SiO2-PEG2000A and SiO2-PVP0.5 ARCs were increased by 7.27% and 8.33%,respectively. The modified SiO2 ARCs possessed the advantages of the low manufacturing cost,good adhesion,superior antireflective performance and the feasible method for large area fabrication.展开更多
基金National Outstanding Youth Science Foundation of China (NSFC50725413)the National Natural Science Foundation of China (NSFC20603049)Natural Science Foundation Project of CQ (CSTC2007BB4154)
文摘Chemical conversion treatment by rare earth metal salt solution was considered as an alternative to chromium chemical conversion treatment to improve the corrosion resistance of magnesium alloys. In this study, cerium conversion coatings formed on AZ31 magnesium alloy were characterized and the formation mechanism was discussed. X-ray photoelectron spectroscopy (XPS) analysis showed that cerium conversion coating consisted of cerium hydroxides/oxides, in which both tetravalent cerium Ce(Ⅳ) and trivalent cerium Ce(Ⅲ) species co-existed. Cerium conversion coating was a two-layer structure. Atomic force microscopy (AFM) images revealed that the morphology of the inside layer was different from that of the outside one, which was responsible for the inherent adhesive weakness of the coating. Corrosion potential (Ecorr) measurements indicated that poor adhesion limited the improvement of the corrosion resistance of the coating. During the treating process, the increased pH value of the cerium salt solution led to the precipitation of cerium hydroxides/oxides. The formation kinetics of the coating followed a parabolic curve.
基金supported by the Foundation of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (No. ASMA 201403)Cooperative Innovation Fund of Jiangsu Province (No. BY 2014004-09)
文摘In this study, the two kinds of Fe-Al coatings were fabricated by pack aluminizing on low-carbon steel at different temperatures. The corrosion behavior of the Fe-Al coatings in artificial seawater was investigated by the electrochemical and weight loss techniques. Results show that the thickness of coating layer increases with increasing aluminizing temperature. The coatings exhibit high micro-hardness and good metallurgical bonding with the substrate. In comparison with the steel substrate, the corrosion current density Ico^r of the Fe-AI coatings is always lower than that of substrate, about 1/38 or 1/33 after 2 h immersion, and 1/3 or 1/6 for 720 h immersion. As can be seen from the weight loss curve, the Fe-AI coatings show less loss than that of the substrate within 30-day immersion. The corrosion products formed on the surface of the coatings include oxides of Al, Mg, Fe and Ca, and pitting defect has also been found. The Fe-Al coating with higher content of Fe2Al5 has better corrosion resistance.
基金financial support of the projects from the National Natural Science Foundation of China (Nos.61205177,51125006 and 61376056)the National High Technology Research and Development Program of China (No.2011AA050505)the Science and Technology Commission of Shanghai Municipality (Nos.11JC1403400,13JC1405700 and 14520722000)
文摘An effective approach was presented to enhance photoelectric conversion efficiency of Cu(In,Ga)Se2 (CIGS) solar cells by using modified SiO2 antireflection coatings(ARCs) to harvest more incident sunlight.Polyethylene glycol(PEG) and polyvinyl pyrrolidone(PVP) used as additives were introduced into silica sols to prepare SiO2-PEG and SiO2-PVP coatings in the sol-gel dip-coating process,respectively. The different effects of PEG and PVP additives on SiO2 coatings were analyzed and the antireflection performance of SiO2-PEG and SiO2-PVP coatings was investigated. The transmittance over 97% ranging from 450 nm to 700 nm with a maximum transmittance over 99.40% at about 550 nm was achieved for both SiO2-PEG2000A and SiO2-PVP0.5 coatings. The relative efficiencies of CIGS solar cells coated with SiO2-PEG2000A and SiO2-PVP0.5 ARCs were increased by 7.27% and 8.33%,respectively. The modified SiO2 ARCs possessed the advantages of the low manufacturing cost,good adhesion,superior antireflective performance and the feasible method for large area fabrication.