期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application 被引量:6
1
作者 Dipak Kumar K.N.Pandey Dipak Kumar Das 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期934-942,共9页
In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transm... In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate. 展开更多
关键词 thermal barrier coatings coating structure plasma spraying thermal cycle high-temperature applications microstructure studies
下载PDF
Structure design of gradient hard coatings on YG8 and their residual stress analysis by ANSYS 被引量:1
2
作者 宋慧瑾 Yan Qiang +2 位作者 Dong Zhihong Guo Wei Tang Yirong 《High Technology Letters》 EI CAS 2017年第3期330-336,共7页
A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature... A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature on the residual stress of the coatings is investigated. Simulated results show that the realistic situation strongly affects the residual stress. To be specific,i) The main residual stress concentrates on the coatings prepared on YG8 substrate,and the residual stress and its gradient of the coatings are bigger than that of the substrate; ii) TiAlN and TiCN coatings have better resistance compression than that of TiN coatings in the same condition; iii) The improved multilayer structure of the gradient hard coatings produces weaker residual stress but higher anti-pressure of the substrate. 展开更多
关键词 gradient coating ANSYS residual stress hard coatings
下载PDF
Moisture-proof and Enhanced Effect of Inorganic Coating on Porous Si_3N_4 Ceramic 被引量:1
3
作者 程传兵 FAN Runhua +3 位作者 WANG Chonghai WANG Hongsheng ZHOU Changling 刘福田 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期311-314,共4页
Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived(PD) and spraying technology, via using vinyl-polysilazane(PSN-1) as a preceramic polymer and Si3N4 and lithium alumino... Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived(PD) and spraying technology, via using vinyl-polysilazane(PSN-1) as a preceramic polymer and Si3N4 and lithium aluminosilicate(LAS) powders as fillers. The phase and microstructure of the coatings were analyzed by X-ray diffraction(XRD) analysis and scanning electron microscopy(SEM), respectively. The effect of the coatings on mechanical property and humidity resistance of the porous Si3N4 ceramic was investigated. The experimental results showed that we successfully fabricated the uniform and dense coating which preferably combined with the substrate upon the addition of fillers. The bending strength of the porous Si3N4 ceramic sprayed the coating increased by more than 18%, and the surface hardness increased by 1.7 times. The apparent porosity of the materials reduced by an average of 97.7%, and water absorption was below 0.5%. Therefore, the prepared coating with preferable density had an obviously moisture-proof and enhanced effect on the porous Si3N4 ceramic. 展开更多
关键词 inorganic coating Si3N4 ceramic moisture-proof and enhanced coating polymer derived radome
下载PDF
Preparation and properties of HA coating hydrothermally synthesized from plasma sprayed Ca HPO_4 coating
4
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第3期138-140,共3页
关键词 HA Preparation and properties of HA coating hydrothermally synthesized from plasma sprayed Ca HPO4 coating SBF CA HPO
下载PDF
Corrosion behavior of Al_(0.4)CoCu_(0.6)NiSi_(0.2)Ti_(0.25) high-entropy alloy coating via 3D printing laser cladding in a sulphur environment 被引量:6
5
作者 Hongxia Wan Dongdong Song +3 位作者 Xiaolei Shi Yong Cai Tingting Li Changfeng Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第1期197-205,共9页
High-entropy alloys(HEAs) are of great interest in materials science and engineering communities owing to their unique phase structure.HEAs are constructed with five or more principal alloying elements in equimolar or... High-entropy alloys(HEAs) are of great interest in materials science and engineering communities owing to their unique phase structure.HEAs are constructed with five or more principal alloying elements in equimolar or near-equimolar ratios.Therefore,they can derive their performance from multiple principal elements ratherthan a single element.In this work,three-dimensional printing laser cladding was applied to produce an Al_(0.4)CoCu_(0.6)NiSi_(0.2)Ti_(0.25) HEA coating.The experimental results confirmed that the laser cladding could be used to produce a thin coating of 120 μm in thickness.In the high-temperature laser cladding process,some Fe elements diffused from the substrate to the coating,forming a combination of face-centred cubic and body-centred cubic phase structures.The HEA coating metallurgically bonded well with the substrate.Owing to the increased dislocation density and number of grain boundaries,the HEA coating was harder and had a stronger hydrophobicity than X70 steel.The electrochemistry results showed that the HEA coating had better corrosion resistance than X70 steel.Aluminium oxides formed on the surface of the HEA coating had a certain protective effect.However,because of the laser cladding,the HEA coating generated cracks.In future work,the laser cladding technology will be improved and heat treatment will be implemented to prevent formation of cracks. 展开更多
关键词 High-entropy alloy coating(HEA coating) Laser cladding Corrosion behaviour
原文传递
Scalable gas-phase processes to create nanostructured particles 被引量:1
6
作者 J.Ruud van Ommen Caner U.Yurteri +1 位作者 Naoko Ellis Erik M.Kelder 《Particuology》 SCIE EI CAS CSCD 2010年第6期572-577,共6页
The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such a... The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes. 展开更多
关键词 Nanoparticles Nanocomposite materials coating Films Particle coating Atomic layer deposition Core-shell particles Electrospraying Electrohydrodynamic atomization Electrostatic forces Fluidization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部