In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transm...In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.展开更多
A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature...A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature on the residual stress of the coatings is investigated. Simulated results show that the realistic situation strongly affects the residual stress. To be specific,i) The main residual stress concentrates on the coatings prepared on YG8 substrate,and the residual stress and its gradient of the coatings are bigger than that of the substrate; ii) TiAlN and TiCN coatings have better resistance compression than that of TiN coatings in the same condition; iii) The improved multilayer structure of the gradient hard coatings produces weaker residual stress but higher anti-pressure of the substrate.展开更多
Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived(PD) and spraying technology, via using vinyl-polysilazane(PSN-1) as a preceramic polymer and Si3N4 and lithium alumino...Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived(PD) and spraying technology, via using vinyl-polysilazane(PSN-1) as a preceramic polymer and Si3N4 and lithium aluminosilicate(LAS) powders as fillers. The phase and microstructure of the coatings were analyzed by X-ray diffraction(XRD) analysis and scanning electron microscopy(SEM), respectively. The effect of the coatings on mechanical property and humidity resistance of the porous Si3N4 ceramic was investigated. The experimental results showed that we successfully fabricated the uniform and dense coating which preferably combined with the substrate upon the addition of fillers. The bending strength of the porous Si3N4 ceramic sprayed the coating increased by more than 18%, and the surface hardness increased by 1.7 times. The apparent porosity of the materials reduced by an average of 97.7%, and water absorption was below 0.5%. Therefore, the prepared coating with preferable density had an obviously moisture-proof and enhanced effect on the porous Si3N4 ceramic.展开更多
High-entropy alloys(HEAs) are of great interest in materials science and engineering communities owing to their unique phase structure.HEAs are constructed with five or more principal alloying elements in equimolar or...High-entropy alloys(HEAs) are of great interest in materials science and engineering communities owing to their unique phase structure.HEAs are constructed with five or more principal alloying elements in equimolar or near-equimolar ratios.Therefore,they can derive their performance from multiple principal elements ratherthan a single element.In this work,three-dimensional printing laser cladding was applied to produce an Al_(0.4)CoCu_(0.6)NiSi_(0.2)Ti_(0.25) HEA coating.The experimental results confirmed that the laser cladding could be used to produce a thin coating of 120 μm in thickness.In the high-temperature laser cladding process,some Fe elements diffused from the substrate to the coating,forming a combination of face-centred cubic and body-centred cubic phase structures.The HEA coating metallurgically bonded well with the substrate.Owing to the increased dislocation density and number of grain boundaries,the HEA coating was harder and had a stronger hydrophobicity than X70 steel.The electrochemistry results showed that the HEA coating had better corrosion resistance than X70 steel.Aluminium oxides formed on the surface of the HEA coating had a certain protective effect.However,because of the laser cladding,the HEA coating generated cracks.In future work,the laser cladding technology will be improved and heat treatment will be implemented to prevent formation of cracks.展开更多
The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such a...The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.展开更多
基金provided by Technical Education Quality Improvement Programme-Ⅱ(TEQIP-Ⅱ)at MNNIT Allahabad
文摘In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA09A203)Project of Sichuan Education Department(No.14ZA0321)
文摘A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature on the residual stress of the coatings is investigated. Simulated results show that the realistic situation strongly affects the residual stress. To be specific,i) The main residual stress concentrates on the coatings prepared on YG8 substrate,and the residual stress and its gradient of the coatings are bigger than that of the substrate; ii) TiAlN and TiCN coatings have better resistance compression than that of TiN coatings in the same condition; iii) The improved multilayer structure of the gradient hard coatings produces weaker residual stress but higher anti-pressure of the substrate.
文摘Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived(PD) and spraying technology, via using vinyl-polysilazane(PSN-1) as a preceramic polymer and Si3N4 and lithium aluminosilicate(LAS) powders as fillers. The phase and microstructure of the coatings were analyzed by X-ray diffraction(XRD) analysis and scanning electron microscopy(SEM), respectively. The effect of the coatings on mechanical property and humidity resistance of the porous Si3N4 ceramic was investigated. The experimental results showed that we successfully fabricated the uniform and dense coating which preferably combined with the substrate upon the addition of fillers. The bending strength of the porous Si3N4 ceramic sprayed the coating increased by more than 18%, and the surface hardness increased by 1.7 times. The apparent porosity of the materials reduced by an average of 97.7%, and water absorption was below 0.5%. Therefore, the prepared coating with preferable density had an obviously moisture-proof and enhanced effect on the porous Si3N4 ceramic.
基金supported by the National Natural Science Foundation of China(Grant Nos.51701055)Science Foundation of China University of Petroleum,Beijing(Nos.2462018YJRC021)+2 种基金the Fundamental Research Funds for the Central Universities(21619401)National Science and Technology Major Project of the Miristry of Science and Technology of China(2016ZX05057001)National Environmental Corrosion Platform。
文摘High-entropy alloys(HEAs) are of great interest in materials science and engineering communities owing to their unique phase structure.HEAs are constructed with five or more principal alloying elements in equimolar or near-equimolar ratios.Therefore,they can derive their performance from multiple principal elements ratherthan a single element.In this work,three-dimensional printing laser cladding was applied to produce an Al_(0.4)CoCu_(0.6)NiSi_(0.2)Ti_(0.25) HEA coating.The experimental results confirmed that the laser cladding could be used to produce a thin coating of 120 μm in thickness.In the high-temperature laser cladding process,some Fe elements diffused from the substrate to the coating,forming a combination of face-centred cubic and body-centred cubic phase structures.The HEA coating metallurgically bonded well with the substrate.Owing to the increased dislocation density and number of grain boundaries,the HEA coating was harder and had a stronger hydrophobicity than X70 steel.The electrochemistry results showed that the HEA coating had better corrosion resistance than X70 steel.Aluminium oxides formed on the surface of the HEA coating had a certain protective effect.However,because of the laser cladding,the HEA coating generated cracks.In future work,the laser cladding technology will be improved and heat treatment will be implemented to prevent formation of cracks.
文摘The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.