The evaporation and dilution of substrate seriously limit the performance of laser cladding coatings on magnesium alloys.In order to overcome the above shortcomings,a multi-step ultrasonic assisted laser remelting tec...The evaporation and dilution of substrate seriously limit the performance of laser cladding coatings on magnesium alloys.In order to overcome the above shortcomings,a multi-step ultrasonic assisted laser remelting technology was proposed to improve the performance of the coating.In this work,a novel Cu_(2.3)Al_(1.3)Ni_(1.7)SnCr_(0.3) multi-principal element alloy coating(MPEAC)was prepared on the surface of mag-nesium alloy.Characterization techniques such as transmission electron microscopy(TEM),electron back scatter diffraction(EBSD)and scanning electron microscopy(SEM)were employed to characterize the microstructure and phase composition of the coatings.And the phase structure and morphology at the interface between the coating and the substrate were also studied via focus ion beam(FIB)and TEM method.In addition,the corrosion and wear resistance ability of the coatings were monitored by potentiodynamic polarization(PDP),and electrochemical impedance spectroscopy(EIS),hardness and friction tests.The results show that Cu_(2.3)Al_(1.3)Ni_(1.7)SnCr_(0.3) MPEAC with ultrasonic assisted is composed of FCC phase and eutectic phases(Cu_(10)Sn_(3) and Cu_(2)Ni_(3)Sn_(3)).Due to the forced convection generated by ultrasonic waves,some Cu and Ni phases are precipitated around Cu_(2)Ni_(3)Sn_(3) phases,which is beneficial to enhance the corrosion resistance.Because of the grain refinement effect caused by ultrasonic,the wear resistance of the coating is also improved.Furthermore,ultrasonic vibration can effectively weaken and eliminate the texture density of the Cu_(2.3)Al_(1.3)Ni_(1.7)SnCr_(0.3) MPEAC fabricated by laser cladding.展开更多
The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investi...The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investigated. The microstructures of the oxide scales grown on the coatings were characterized by scanning electron microscope(SEM) with energy-dispersive X-ray spectrum(EDX),electron probe micro-analyzer(EPMA) and X-ray diffraction(XRD). The effects of Cr and Si on the cyclic oxidation behavior of the Ni Al Hf coatings were discussed. The addition of Si to the Ni Al Hf Cr coating not only reduces the oxidation rate but also enhances the oxide scale adherence.Owing to the addition of Si in the coating, the segregation of Cr and Mo beneath the oxide scale is effectively avoided,which contributes to enhancing oxide scale adherence.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51975137 and 52175163)the Equipment Pre-research Field Foundation(No.80923010602)the Fundamental Research Funds for the Central University(No.3072021CFT1008).
文摘The evaporation and dilution of substrate seriously limit the performance of laser cladding coatings on magnesium alloys.In order to overcome the above shortcomings,a multi-step ultrasonic assisted laser remelting technology was proposed to improve the performance of the coating.In this work,a novel Cu_(2.3)Al_(1.3)Ni_(1.7)SnCr_(0.3) multi-principal element alloy coating(MPEAC)was prepared on the surface of mag-nesium alloy.Characterization techniques such as transmission electron microscopy(TEM),electron back scatter diffraction(EBSD)and scanning electron microscopy(SEM)were employed to characterize the microstructure and phase composition of the coatings.And the phase structure and morphology at the interface between the coating and the substrate were also studied via focus ion beam(FIB)and TEM method.In addition,the corrosion and wear resistance ability of the coatings were monitored by potentiodynamic polarization(PDP),and electrochemical impedance spectroscopy(EIS),hardness and friction tests.The results show that Cu_(2.3)Al_(1.3)Ni_(1.7)SnCr_(0.3) MPEAC with ultrasonic assisted is composed of FCC phase and eutectic phases(Cu_(10)Sn_(3) and Cu_(2)Ni_(3)Sn_(3)).Due to the forced convection generated by ultrasonic waves,some Cu and Ni phases are precipitated around Cu_(2)Ni_(3)Sn_(3) phases,which is beneficial to enhance the corrosion resistance.Because of the grain refinement effect caused by ultrasonic,the wear resistance of the coating is also improved.Furthermore,ultrasonic vibration can effectively weaken and eliminate the texture density of the Cu_(2.3)Al_(1.3)Ni_(1.7)SnCr_(0.3) MPEAC fabricated by laser cladding.
基金financially supported by the National Basic Research Program of China (Nos. 2012CB625100 and 2010CB631200)the National Natural Science Foundation of China (No. 51231001)
文摘The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investigated. The microstructures of the oxide scales grown on the coatings were characterized by scanning electron microscope(SEM) with energy-dispersive X-ray spectrum(EDX),electron probe micro-analyzer(EPMA) and X-ray diffraction(XRD). The effects of Cr and Si on the cyclic oxidation behavior of the Ni Al Hf coatings were discussed. The addition of Si to the Ni Al Hf Cr coating not only reduces the oxidation rate but also enhances the oxide scale adherence.Owing to the addition of Si in the coating, the segregation of Cr and Mo beneath the oxide scale is effectively avoided,which contributes to enhancing oxide scale adherence.