Combining the self-stimulated Raman scattering technology and saturable absorber of Cr^(4+):YAG, a 1.17 μm c-cut Nd:GdVO_4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 ...Combining the self-stimulated Raman scattering technology and saturable absorber of Cr^(4+):YAG, a 1.17 μm c-cut Nd:GdVO_4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB_3O_5 frequency doubling crystal.展开更多
基金supported by the National Natural Science Foundation of China(No.61108021)the Fundamental Research Funds for the Central Universities(Nos.2013JBM091 and S16JB00010)
文摘Combining the self-stimulated Raman scattering technology and saturable absorber of Cr^(4+):YAG, a 1.17 μm c-cut Nd:GdVO_4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB_3O_5 frequency doubling crystal.