A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
Nanocrystalline diamond films were deposited on Co-cemented carbide substrates using acetone/ H<sub>2</sub>/Ar gas mixture by bias-enhanced hot filament chemical vapor deposition(HFCVD) technique.The evi...Nanocrystalline diamond films were deposited on Co-cemented carbide substrates using acetone/ H<sub>2</sub>/Ar gas mixture by bias-enhanced hot filament chemical vapor deposition(HFCVD) technique.The evidence of nanocrystallinity,smoothness and purity was obtained by characterizing the sample with scanning electron microscopy(SEM),X-ray diffraction(XRD),Raman spectroscopy,atomic force microscopy (AFM ),and field emission transmission electron microscopy(FE-TEM ).The results show that nanocrystalline diamond films consists of nanocrystalline diamond grains with sizes range from 20 to 80 nm and contain a large amount of grain boundaries.The surface roughness of the films is measured as R<sub>a</sub>【50nm.The Raman spectroscopy,XRD pattern,and FE-TEM image of the films indicate the presence of nanocrystalline diamond.A new process is used to deposit composite diamond coatings by a two-step chemical vapor deposition procedure,including first the deposition of the rough polycrystalline diamond and then the smooth fine-grained nanocrystalline diamond film.Such composite diamond coatings not only display good adhesion and wear resistant properties,but also have smooth surfaces that are liable to polishing.This coating technology can not only meet the requirement of the adhesion of diamond coatings,but also reduce surface roughness of diamond coatings effectively,thus remove the obstacles for the industrialization of CVD diamond coatings.The diamondcoated dies with these composite coatings show obvious effect in the practical application.展开更多
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金Supported by the National Natural Science Foundation of China(50575135)
文摘Nanocrystalline diamond films were deposited on Co-cemented carbide substrates using acetone/ H<sub>2</sub>/Ar gas mixture by bias-enhanced hot filament chemical vapor deposition(HFCVD) technique.The evidence of nanocrystallinity,smoothness and purity was obtained by characterizing the sample with scanning electron microscopy(SEM),X-ray diffraction(XRD),Raman spectroscopy,atomic force microscopy (AFM ),and field emission transmission electron microscopy(FE-TEM ).The results show that nanocrystalline diamond films consists of nanocrystalline diamond grains with sizes range from 20 to 80 nm and contain a large amount of grain boundaries.The surface roughness of the films is measured as R<sub>a</sub>【50nm.The Raman spectroscopy,XRD pattern,and FE-TEM image of the films indicate the presence of nanocrystalline diamond.A new process is used to deposit composite diamond coatings by a two-step chemical vapor deposition procedure,including first the deposition of the rough polycrystalline diamond and then the smooth fine-grained nanocrystalline diamond film.Such composite diamond coatings not only display good adhesion and wear resistant properties,but also have smooth surfaces that are liable to polishing.This coating technology can not only meet the requirement of the adhesion of diamond coatings,but also reduce surface roughness of diamond coatings effectively,thus remove the obstacles for the industrialization of CVD diamond coatings.The diamondcoated dies with these composite coatings show obvious effect in the practical application.