The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematic...The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematical model for the coaxial twelve-rotor UAV is designed. Considering model uncertainties and external disturbances,a robust backstepping sliding mode control( BSMC) with self recurrent wavelet neural network( SRWNN) method is proposed as the attitude controller for the coaxial twelve-rotor. A combinative algorithm of backstepping control and sliding mode control has simplified design procedures with much stronger robustness benefiting from advantages of both controllers. SRWNN as the uncertainty observer is able to estimate the lumped uncertainties effectively.Then the uniformly ultimate stability of the twelve-rotor system is proved by Lyapunov stability theorem. Finally,the validity of the proposed robust control method adopted in the twelve-rotor UAV under model uncertainties and external disturbances are demonstrated via numerical simulations and twelve-rotor prototype experiments.展开更多
Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust ada...Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust adaptive control. First, a mathematical model of a coaxial twelve-rotor is established. Aiming at the problem of model uncertainty and external disturbance of the coaxial twelve-rotor UAV, the attitude controller is innovatively adopted with the combination of a backstepping sliding mode controller (BSMC) and an adaptive radial basis function neural network (RBFNN). The BSMC combines the advantages of backstepping control and sliding mode control, which has a simple design process and strong robustness. The RBFNN as an uncertain observer, can effectively estimate the total uncertainty. Then the stability of the twelve-rotor UAV control system is proved by Lyapunov stability theorem. Finally, it is proved that the robust adaptive control strategy presented in this paper can overcome model uncertainty and external disturbance effectively through numerical simulation and prototype of twelve-rotor UAV tests.展开更多
To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is...To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV.展开更多
基金Supported by the National Natural Science Foundation of China(No.11372309,61304017)Science and Technology Development Plan Key Project of Jilin Province(No.20150204074GX)the Science and Technology Special Fund Project of Provincial Academy Cooperation(No.2017SYHZ00024)
文摘The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematical model for the coaxial twelve-rotor UAV is designed. Considering model uncertainties and external disturbances,a robust backstepping sliding mode control( BSMC) with self recurrent wavelet neural network( SRWNN) method is proposed as the attitude controller for the coaxial twelve-rotor. A combinative algorithm of backstepping control and sliding mode control has simplified design procedures with much stronger robustness benefiting from advantages of both controllers. SRWNN as the uncertainty observer is able to estimate the lumped uncertainties effectively.Then the uniformly ultimate stability of the twelve-rotor system is proved by Lyapunov stability theorem. Finally,the validity of the proposed robust control method adopted in the twelve-rotor UAV under model uncertainties and external disturbances are demonstrated via numerical simulations and twelve-rotor prototype experiments.
基金Supported by the National Natural Science Foundation of China(No.11372309,61304017)Youth Innovation Promotion Association(No.2014192)+1 种基金the Provincial Special Funds Project of Science and Technology Cooperation(No.2017SYHZ0024)the Key Technology Development Project of Jilin Province(No.20150204074GX)
文摘Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust adaptive control. First, a mathematical model of a coaxial twelve-rotor is established. Aiming at the problem of model uncertainty and external disturbance of the coaxial twelve-rotor UAV, the attitude controller is innovatively adopted with the combination of a backstepping sliding mode controller (BSMC) and an adaptive radial basis function neural network (RBFNN). The BSMC combines the advantages of backstepping control and sliding mode control, which has a simple design process and strong robustness. The RBFNN as an uncertain observer, can effectively estimate the total uncertainty. Then the stability of the twelve-rotor UAV control system is proved by Lyapunov stability theorem. Finally, it is proved that the robust adaptive control strategy presented in this paper can overcome model uncertainty and external disturbance effectively through numerical simulation and prototype of twelve-rotor UAV tests.
基金the National Natural Science Foundation of China(No.11372309,61304017)Youth Innovation Promotion Association(No.2014192)+1 种基金the Provincial Special Funds Project of Science and Technology Cooperation(No.2017SYHZ0024)Key Technology Development Project of Jilin Province(No.20150204074GX).
文摘To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV.