The waveguide to coaxial cable adapter is very important to the cavity beam position monitor (CBPM) because it determines how much of the energy in the cavity could be coupled outside. In this paper, the waveguide t...The waveguide to coaxial cable adapter is very important to the cavity beam position monitor (CBPM) because it determines how much of the energy in the cavity could be coupled outside. In this paper, the waveguide to coaxial cable adapter of a CBPM is designed and experiments are conducted. The curve shapes of experiments and simulations are very similar and the difference in reflection is less than 0.1. This progress provides a reliable method for designing the adapter.展开更多
The external Q (Qext) of the dipole mode is a key parameter of the Cavity Beam Position Monitor (CBPM). It determines the amplitude and length of the dipole mode signal. In this paper, Qext of a CBPM whose wavegui...The external Q (Qext) of the dipole mode is a key parameter of the Cavity Beam Position Monitor (CBPM). It determines the amplitude and length of the dipole mode signal. In this paper, Qext of a CBPM whose waveguides were open to the air was simulated and measured, and the results agreed with each other. Then four waveguide-to-coaxial cable adpaters were adjusted and assembled to the CBPM, and Qext remained unchanged. This progress provides a reliable method to evaluate Qext in the physics design without simulating the structurally complex adapters.展开更多
文摘The waveguide to coaxial cable adapter is very important to the cavity beam position monitor (CBPM) because it determines how much of the energy in the cavity could be coupled outside. In this paper, the waveguide to coaxial cable adapter of a CBPM is designed and experiments are conducted. The curve shapes of experiments and simulations are very similar and the difference in reflection is less than 0.1. This progress provides a reliable method for designing the adapter.
文摘The external Q (Qext) of the dipole mode is a key parameter of the Cavity Beam Position Monitor (CBPM). It determines the amplitude and length of the dipole mode signal. In this paper, Qext of a CBPM whose waveguides were open to the air was simulated and measured, and the results agreed with each other. Then four waveguide-to-coaxial cable adpaters were adjusted and assembled to the CBPM, and Qext remained unchanged. This progress provides a reliable method to evaluate Qext in the physics design without simulating the structurally complex adapters.