Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefor...Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention.展开更多
Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,th...Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,the poor chemical stability and low electron conductivity limited their activity,and single-functional sites in these frameworks hindered them to show multifunctional roles in catalytic systems.Herein,we have constructed novel metal organic polymers(Co-HAT-CN and Ni-HAT-CN)with dual catalytic centers(metal-N_(4) and metal-N_(2))to catalyze oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).By using different metal centers,the catalytic activity and selectivity were well-tuned.Among them,Co-HAT-CN catalyzed the ORR in a 4e^(-)pathway,with a half-wave potential of 0.8 V versus RHE,while the Ni-HAT-CN catalyze ORR in a 2e^(-)pathway with H_(2)O_(2) selectivity over 90%.Moreover,the Co-HAT-CN delivered an overpotential of 350 mV at 10 mA cm^(-2) with a corresponding Tafel slope of 24 mV dec^(-1) for OER in a 1.0 M KOH aqueous solution.The experimental results revealed that the activities toward ORR were due to the M-N_(4) sites in the frameworks,and both M-N_(4) and M-N_(2) sites contributed to the OER.This work gives us a new platform to construct bifunctional catalysts.展开更多
(E)-2,6-Dimethyl-4-styrylpyridine-3,5-dicarboxylic acid (H2mspda) is firstly employed in coordination chemistry.Two isostructural two-dimensional (2-D) 4-connected metal-organic coordination polymers with a gene...(E)-2,6-Dimethyl-4-styrylpyridine-3,5-dicarboxylic acid (H2mspda) is firstly employed in coordination chemistry.Two isostructural two-dimensional (2-D) 4-connected metal-organic coordination polymers with a general formula of {M2[(mspda)2(bpy)(H2O)2]}n (M=Zn(1) and Co(2)) are assembled from H2mspda,4,4'-bipyridyl (bpy),zinc and cobalt ions under hydrothermal conditions,and characterized by single-crystal X-ray diffraction analyses.Complex 1 crystallizes in monoclinic,space group P21/n with a=14.551(4),b=10.941(3),c=14.945(4),β=98.817(4)o,V=2351.3(1)3,Dc=1.511 g/cm3,μ(MoKα)=1.090 mm-1,F(000)=1104,Z=4,the final R=0.0335 and wR=0.0485 for 3296 observed reflections (I 〉 2σ(I)).In compound 1,mspda2-spacers are only arrayed in a head-to-tail fashion which corresponds to a 2-D coordination polymer.Solid-state H2mspda and complex 1 have expected photoluminescence (λem=475~496 nm) at room temperature.展开更多
High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,...High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,have been intensively employed as novel fire retardants(FRs)for a variety of polymers(MOF/polymer).The MOFs possessed abundant transition metal species,fire-retardant elements and potential carbon source accompanied with the facile tuning of the structure and property,making MOF,its derivatives and MOF hybrids promising for fire retardancy research.The recent progress and strategies to prepare MOF-based FRs are emphasized and summarized.The fire retardancy mechanisms of MOF/polymer composites are explained,which may guide the future design for efficient MOF-based FRs.Finally,the challenges and prospects related to different MOFbased FRs are also discussed and aim to provide a fast and holistic overview,which is beneficial for researchers to quickly get up to speed with the latest development in this field.展开更多
One novel metal-organic framework(MOF), [Ba(L)(HO)](1, HL =aniline-2,5-disulfonic acid), has been synthesized by hydrothermal method. Each barium atom is eleven-coordinated into a distorted monocapped pentagonal antip...One novel metal-organic framework(MOF), [Ba(L)(HO)](1, HL =aniline-2,5-disulfonic acid), has been synthesized by hydrothermal method. Each barium atom is eleven-coordinated into a distorted monocapped pentagonal antiprismatic arrangement. Compound 1 shows an interesting 3 D pillar-layered structure constructed from 2 D inorganic layers[Ba(SO)(HO)]and organic pillars of phenyl moieties of L2-linkages. The inorganic layers are supported by the organic pillars, generating a novel 3 D open framework structure with {3, 4~6, 5~5, 6~5,7~4}2{3}{5} topology. The result of fluorescence measurement can reveal that the decayed emission band centered at 492 nm may be caused by the interactions of the ligands and the metal ions.Compound 1 exhibits selective toward the adsorption of COover Nat 273 K.展开更多
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of C...Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties.Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67.After calcination in nitrogen atmosphere,the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved.The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous)cobalt-oxide deposits appear on the surface of graphitic carbons.The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree,large surface area and the large amount existence of Co–N active sites.展开更多
Utilizing the periodically structured metal-organic framework (MOF) as the reaction vessel is a promising technique to achieve the aligned polymer molecular chains, where the diffusion procedure of the polymer monom...Utilizing the periodically structured metal-organic framework (MOF) as the reaction vessel is a promising technique to achieve the aligned polymer molecular chains, where the diffusion procedure of the polymer monomer inside MOF is one of the key mechanisms. To investigate the diffusion mechanism of fluorinated polymer monomers in MOFs, in this paper the molecular dynamics simulations combined with the density functional theory and the Monte Carlo method are used and the all-atom models of TFMA (trifluoroethyl methacrylate) monomer and two types of MOFs,[Zn2(BDC)2(TED)]n and[Zn2(BPDC)2(TED)]n, are established. The diffusion behaviors of TFMA monomer in these two MOFs are simulated and the main influencing factors are analyzed. The obtained results are as follows. First, the electrostatic interactions between TFMA monomers and MOFs cause the monomers to concentrate in the MOF channel, which slows down the monomer diffusion. Second, the anisotropic shape of the one-dimensional MOF channel leads to different diffusion speeds of monomers in different directions. Third, MOF with a larger pore diameter due to a longer organic ligand,[Zn2(BPDC)2(TED)]n in this paper, facilitates the diffusion of monomers in the MOF channel. Finally, as the number of monomers increases, the self-diffusion coefficient is reduced by the steric effect.展开更多
3D supramolecular network with considerable volume pores was created via hydrogen bond & C-H</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;&qu...3D supramolecular network with considerable volume pores was created via hydrogen bond & C-H</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">--</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">π. By </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">tightening </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">of The metal-organic frameworks (MOF) namely [Ni(μ-pmb)</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">(H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O)</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">]</span><sub><span style="font-family:Verdana;">n</span></sub><span style="font-family:Verdana;"> (pmb = 3,5-bis(4-pyridylmethylenoxyl)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">benzoate, that have been synthesized by hydrothermal method. Complex 1 crystallizes in triclinic P-1 space group and consists of 1D semi zigzag chain.展开更多
The polymer-mineral composites were synthesized using vinyl monomers styrene<span "="" style="font-size:10.5pt;"><span style="font-size:12px;">, methyl acrylate, and buty...The polymer-mineral composites were synthesized using vinyl monomers styrene<span "="" style="font-size:10.5pt;"><span style="font-size:12px;">, methyl acrylate, and butyl acrylate with nano dispersed oxides Fe</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">3</span></sub><span style="font-size:12px;">, Cr</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">3</span></sub><span style="font-size:12px;">, V</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">5</span></sub><span style="font-size:12px;"> and SiO</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;"> in the presence of benzoyl peroxide and other peroxide initiators. Benzoyl peroxide adsorption on Fe</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">3</span></sub><span style="font-size:12px;">, Cr</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">3</span></sub><span style="font-size:12px;">, and V</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">5</span></sub><span style="font-size:12px;"> surfaces was studied. The adsorption parameters were found: adsorption-desorption equilibrium constants, maximum adsorption, and the area occupied by the molecule benzoyl peroxide on the surface of the adsorbent. The molecular weights of the polymers in the composites and the degree of grafting of the macromolecules of the polymer to the surface of oxides were studied. It has been found that the surface of the dispersed oxides influences the rate of thermal decomposition of the peroxide initiators and the polymerization parameters of the vinyl monomers.</span></span>展开更多
Monitoring of sweat pH plays important roles in physiological health,nutritional balance,psychological stress,and sports performance.However,the combination of functional MOFs with phosphorescent material to acquire t...Monitoring of sweat pH plays important roles in physiological health,nutritional balance,psychological stress,and sports performance.However,the combination of functional MOFs with phosphorescent material to acquire the real-time physiological information,as well as the application of dual mode anti-counterfeiting,has seldom been reported.Herein,we developed multifunctional gel films based on MOFs and phosphorescent dyes which responded to H+ions and the related mechanism was studied in detail.Upon exposure to H+,the composite gel film exhibited decreased fluorescent signal but enhanced room temperature phosphorescence(RTP),which could be utilized for sweat pH sensing through a dual-mode.Moreover,multifunctional gel films exhibited a potential application in information encryption and anti-counterfeiting by designing of stimulus responsive multiple patterns.This research provided a new avenue for portable and non-invasive sweat pH monitoring methods while also offering insights into stimulus-responsive multifunctional materials.展开更多
基金financially supported by National Natural Science Foundation of China(Grans Nos.22179109 and 22005315)Fundamental Research Funds for the Central Universities(SWU120080)Chongqing Key Laboratory of Materials Surface&Interface Science(Project No.KFJJ2002)
文摘Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention.
基金support from the Natural Science Foundation of Shanghai (20ZR1464000)G.Zeng acknowledges the support from the National Natural Science Foundation of China (21878322,22075309)the Science and Technology Commission of Shanghai Municipality (19ZR1479200,22ZR1470100)。
文摘Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,the poor chemical stability and low electron conductivity limited their activity,and single-functional sites in these frameworks hindered them to show multifunctional roles in catalytic systems.Herein,we have constructed novel metal organic polymers(Co-HAT-CN and Ni-HAT-CN)with dual catalytic centers(metal-N_(4) and metal-N_(2))to catalyze oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).By using different metal centers,the catalytic activity and selectivity were well-tuned.Among them,Co-HAT-CN catalyzed the ORR in a 4e^(-)pathway,with a half-wave potential of 0.8 V versus RHE,while the Ni-HAT-CN catalyze ORR in a 2e^(-)pathway with H_(2)O_(2) selectivity over 90%.Moreover,the Co-HAT-CN delivered an overpotential of 350 mV at 10 mA cm^(-2) with a corresponding Tafel slope of 24 mV dec^(-1) for OER in a 1.0 M KOH aqueous solution.The experimental results revealed that the activities toward ORR were due to the M-N_(4) sites in the frameworks,and both M-N_(4) and M-N_(2) sites contributed to the OER.This work gives us a new platform to construct bifunctional catalysts.
基金Supported by the Key Project of Chinese Ministry of Education (No. 208116)the Scientific and Technological Project of CQEC (No. KJ080829)
文摘(E)-2,6-Dimethyl-4-styrylpyridine-3,5-dicarboxylic acid (H2mspda) is firstly employed in coordination chemistry.Two isostructural two-dimensional (2-D) 4-connected metal-organic coordination polymers with a general formula of {M2[(mspda)2(bpy)(H2O)2]}n (M=Zn(1) and Co(2)) are assembled from H2mspda,4,4'-bipyridyl (bpy),zinc and cobalt ions under hydrothermal conditions,and characterized by single-crystal X-ray diffraction analyses.Complex 1 crystallizes in monoclinic,space group P21/n with a=14.551(4),b=10.941(3),c=14.945(4),β=98.817(4)o,V=2351.3(1)3,Dc=1.511 g/cm3,μ(MoKα)=1.090 mm-1,F(000)=1104,Z=4,the final R=0.0335 and wR=0.0485 for 3296 observed reflections (I 〉 2σ(I)).In compound 1,mspda2-spacers are only arrayed in a head-to-tail fashion which corresponds to a 2-D coordination polymer.Solid-state H2mspda and complex 1 have expected photoluminescence (λem=475~496 nm) at room temperature.
基金This research is partly supported by the scholarship from China Scholarship Council under the Grant CSC(201608060071).
文摘High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,have been intensively employed as novel fire retardants(FRs)for a variety of polymers(MOF/polymer).The MOFs possessed abundant transition metal species,fire-retardant elements and potential carbon source accompanied with the facile tuning of the structure and property,making MOF,its derivatives and MOF hybrids promising for fire retardancy research.The recent progress and strategies to prepare MOF-based FRs are emphasized and summarized.The fire retardancy mechanisms of MOF/polymer composites are explained,which may guide the future design for efficient MOF-based FRs.Finally,the challenges and prospects related to different MOFbased FRs are also discussed and aim to provide a fast and holistic overview,which is beneficial for researchers to quickly get up to speed with the latest development in this field.
基金supported by the Liaoning Provincial Education Department(No.L2015299)Innovative training program for College Students(Nos.201710148000118,201710148000147)
文摘One novel metal-organic framework(MOF), [Ba(L)(HO)](1, HL =aniline-2,5-disulfonic acid), has been synthesized by hydrothermal method. Each barium atom is eleven-coordinated into a distorted monocapped pentagonal antiprismatic arrangement. Compound 1 shows an interesting 3 D pillar-layered structure constructed from 2 D inorganic layers[Ba(SO)(HO)]and organic pillars of phenyl moieties of L2-linkages. The inorganic layers are supported by the organic pillars, generating a novel 3 D open framework structure with {3, 4~6, 5~5, 6~5,7~4}2{3}{5} topology. The result of fluorescence measurement can reveal that the decayed emission band centered at 492 nm may be caused by the interactions of the ligands and the metal ions.Compound 1 exhibits selective toward the adsorption of COover Nat 273 K.
基金the support of Chinese Government 1000 young talent planthe support of Curtin Strategic International Research Scholarship+8 种基金Curtin University Mobility ScholarshipChinese Government Award for Outstanding Self-Financed Students Abroadthe support from ATN Seed fundARC Future Fellowship (FT180100705)Discovery Project (DP180102297)the facilities, scientific and technical assistance of the Curtin University Electron Microscope Laboratories, a facility partially funded by the University, State and Commonwealth GovernmentsThe use of equipment, scientific and technical assistance of the WA X-Ray Surface Analysis Facility, funded by the Australian Research Council LIEF grant LE120100026the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis (CMCA), the University of Western Australia (UWA), a facility funded by the University, State and Commonwealth Governmentsthe support from the Australian Research Council Future Fellowship (FT12100178)
文摘Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties.Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67.After calcination in nitrogen atmosphere,the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved.The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous)cobalt-oxide deposits appear on the surface of graphitic carbons.The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree,large surface area and the large amount existence of Co–N active sites.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575096)
文摘Utilizing the periodically structured metal-organic framework (MOF) as the reaction vessel is a promising technique to achieve the aligned polymer molecular chains, where the diffusion procedure of the polymer monomer inside MOF is one of the key mechanisms. To investigate the diffusion mechanism of fluorinated polymer monomers in MOFs, in this paper the molecular dynamics simulations combined with the density functional theory and the Monte Carlo method are used and the all-atom models of TFMA (trifluoroethyl methacrylate) monomer and two types of MOFs,[Zn2(BDC)2(TED)]n and[Zn2(BPDC)2(TED)]n, are established. The diffusion behaviors of TFMA monomer in these two MOFs are simulated and the main influencing factors are analyzed. The obtained results are as follows. First, the electrostatic interactions between TFMA monomers and MOFs cause the monomers to concentrate in the MOF channel, which slows down the monomer diffusion. Second, the anisotropic shape of the one-dimensional MOF channel leads to different diffusion speeds of monomers in different directions. Third, MOF with a larger pore diameter due to a longer organic ligand,[Zn2(BPDC)2(TED)]n in this paper, facilitates the diffusion of monomers in the MOF channel. Finally, as the number of monomers increases, the self-diffusion coefficient is reduced by the steric effect.
文摘3D supramolecular network with considerable volume pores was created via hydrogen bond & C-H</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">--</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">π. By </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">tightening </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">of The metal-organic frameworks (MOF) namely [Ni(μ-pmb)</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">(H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O)</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">]</span><sub><span style="font-family:Verdana;">n</span></sub><span style="font-family:Verdana;"> (pmb = 3,5-bis(4-pyridylmethylenoxyl)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">benzoate, that have been synthesized by hydrothermal method. Complex 1 crystallizes in triclinic P-1 space group and consists of 1D semi zigzag chain.
文摘The polymer-mineral composites were synthesized using vinyl monomers styrene<span "="" style="font-size:10.5pt;"><span style="font-size:12px;">, methyl acrylate, and butyl acrylate with nano dispersed oxides Fe</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">3</span></sub><span style="font-size:12px;">, Cr</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">3</span></sub><span style="font-size:12px;">, V</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">5</span></sub><span style="font-size:12px;"> and SiO</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;"> in the presence of benzoyl peroxide and other peroxide initiators. Benzoyl peroxide adsorption on Fe</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">3</span></sub><span style="font-size:12px;">, Cr</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">3</span></sub><span style="font-size:12px;">, and V</span><sub><span style="font-size:12px;">2</span></sub><span style="font-size:12px;">O</span><sub><span style="font-size:12px;">5</span></sub><span style="font-size:12px;"> surfaces was studied. The adsorption parameters were found: adsorption-desorption equilibrium constants, maximum adsorption, and the area occupied by the molecule benzoyl peroxide on the surface of the adsorbent. The molecular weights of the polymers in the composites and the degree of grafting of the macromolecules of the polymer to the surface of oxides were studied. It has been found that the surface of the dispersed oxides influences the rate of thermal decomposition of the peroxide initiators and the polymerization parameters of the vinyl monomers.</span></span>
基金supported by the Basic Research Fund for the Central Universities(WK3450000006)the National Natural Science Foundation of China(52373122).
文摘Monitoring of sweat pH plays important roles in physiological health,nutritional balance,psychological stress,and sports performance.However,the combination of functional MOFs with phosphorescent material to acquire the real-time physiological information,as well as the application of dual mode anti-counterfeiting,has seldom been reported.Herein,we developed multifunctional gel films based on MOFs and phosphorescent dyes which responded to H+ions and the related mechanism was studied in detail.Upon exposure to H+,the composite gel film exhibited decreased fluorescent signal but enhanced room temperature phosphorescence(RTP),which could be utilized for sweat pH sensing through a dual-mode.Moreover,multifunctional gel films exhibited a potential application in information encryption and anti-counterfeiting by designing of stimulus responsive multiple patterns.This research provided a new avenue for portable and non-invasive sweat pH monitoring methods while also offering insights into stimulus-responsive multifunctional materials.
基金Key Program of Natural Science Foundation of Shenzhen(JCYJ20220818102218039)Shenzhen Science and Technology Program(KCXFZ20230731093559005)+2 种基金Natural Science Foundation of Shenzhen(JCYJ20210324133412033)Guangdong Province Innovation Team Project for Universities(2023KCXTD049)Shenzhen Key Medical Discipline Construction Fund(SZXK045)。