The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900 ℃...The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900 ℃ for periods up to 2 h were conducted. Changes of the top surface morphology and microstructure were analyzed by scanning electron microscope (SEM), energy-dispersive spectra (EDS), transmission electron microscope (TEM) and X-ray diffraction technique (XRD), respectively. The weights were measured between the oxidation cycles to assess the oxidation of the specimens. The top surface microstructure after LP was characterized by highly tangled and dense dislocation arrangements and a high amount of twins. Protective oxidation layer was generated more quickly on the surface treated by LP. The average oxidation rate was about 50 % lower. A tiny homogeneous oxidation layer containing (Fe,Cr)2O3, NiCrO3 and Ni(A1,Cr)2O4 spinel was generated on the surface. The experimental results of cyclic oxidation tests show that specimens treated by LP have a better high temperature oxidation resistance, and the antistrip performance of the oxidation layer improves. Moreover, the effects of LP are strengthened with the increase of laser peening.展开更多
The cyclic oxidation resistance of cast Ni-base superalloy K38G and its sputtered micro-grained film were studied between 950℃ and room temper- ature in air.The results show that the weight gain of micrograined films...The cyclic oxidation resistance of cast Ni-base superalloy K38G and its sputtered micro-grained film were studied between 950℃ and room temper- ature in air.The results show that the weight gain of micrograined films is much less than that of cast al- loy during cyclic oxidation,and the resistance of micro-grained fihns is even better than that of the aluminide coating on the same alloy.On the surface of cast alloy K38G,complex oxide scales of Cr_2O_3, TiO_2 and NiCr_2O_4 spinel formed and they began to spall alter about 30 cycles of test.However,on the micro-grained films,continuous and thin α-Al_2O_2 scale was formed and did not spall throughout the cyclic oxidation test.展开更多
The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering.At elevated temperatures,oxidation of the surfaces h...The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering.At elevated temperatures,oxidation of the surfaces has an effective role in the fatigue strength and ductility of the alloys.In the present work,the effect of prior cyclic oxidation on the high temperature low cycle fatigue(HTLCF)properties of nickel-based superalloy Rene®80 has been assessed in the uncoated state and in the Pt-aluminide(Pt-Al)coated condition at 930℃.To apply cyclic oxidation,simulation of engine thermal exposure was carried out by exposing coated and uncoated fatigue specimens in the burner rig(120 cycles at 1100℃).The cyclic oxidation procedure led to a changing in the coating microstructure from the dual-phase(ξ-PtAl_(2)+β-(Ni,Pt)Al)to single phase(β-(Ni,Pt)Al).Results of HTLCF tests showed an improvement in the HTLCF life around 11.5%in the unexposed coated specimen(pre-cyclic oxidation)as compared to unexposed bare specimen,while this rise for exposed coated specimen(post-cyclic oxidation)was only 5%.Although a mixed mode fracture morphology(ductile and brittle)was observed on the fracture surfaces of failed specimens,the wider regions of brittle fracture belonged to exposed coated/uncoated ones.展开更多
A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatm...A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.展开更多
Cyclic oxidation behavior of Ni Cr Al YSi+Ni Al/c BN abrasive coating at 900°C and the mechanical properties of the coating-substrate system were investigated.Results indicated that elemental interdiffusion occur...Cyclic oxidation behavior of Ni Cr Al YSi+Ni Al/c BN abrasive coating at 900°C and the mechanical properties of the coating-substrate system were investigated.Results indicated that elemental interdiffusion occurred between the coating and substrate,which caused the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)during aluminization,while their compositions and structures changed with oxidation.Al N interfacial layer formed at c BN/metallic matrix interface during aluminization,while it transformed into multilayer oxides during oxidation.Due to the microstructural evolution of these interfaces,the fracture behavior and bending toughness of the system changed greatly during three-point bending tests.Besides,the damage mechanisms were discussed.展开更多
The intrinsic relationship between the microstructure evolution and thermal fatigue behavior of a single-crystal cobalt-base superalloy has been investigated. The thermal fatigue tests are performed cyclically between...The intrinsic relationship between the microstructure evolution and thermal fatigue behavior of a single-crystal cobalt-base superalloy has been investigated. The thermal fatigue tests are performed cyclically between room temperature and 1050 ℃ using V-notch plate specimens. Three states of thermal fatigue specimens are selected: the as-cast, solutionized as well as aged states. The solution treatment is carried out at 1260 ℃ for 24 h, which results in the dissolution of most of interdendritic continuous primary carbides. The subsequent aging treatment is carried out at 1100 ℃ for 100 h after solution treatment, resulting in the precipitation of a profusion of chain- and point-like M23C6 carbides in the matrix. The results indicate that the heat treatment can improve the thermal fatigue properties of the alloy and the effect of the solution treatment is more prominent than that of the aging treatment. The coarse and continuously distributed primary carbides in the as-cast state are changed into small and discontinuous distribution by heat treatment, which is the dominant factor in the improvement of thermal fatigue property. Additionally, the effect of oxidation behavior during thermal fatigue test on the thermal fatigue behavior is also studied.展开更多
Cyclic oxidation test is a fundamental method to assess lifetime of materials in high temperature environment.Cycle length or cyclic frequency is one important variable in cyclic oxidation testing.In present work,cycl...Cyclic oxidation test is a fundamental method to assess lifetime of materials in high temperature environment.Cycle length or cyclic frequency is one important variable in cyclic oxidation testing.In present work,cyclic oxidation tests were performed on cast K38 alloys with 0 wt.%,0.1 wt.%,and 0.5 wt.% yttrium additions at 1 273 K respectively.Two cyclic frequencies were used to investigate the influence of cycle length (1 h vs.20 h) on the high temperature oxidation behavior of superalloy.The results showed that the degradation of cast K38 alloy critically was dependent on the cyclic frequency.The yttrium addition was beneficial to reducing scale-growth rate,improving the scale adhesion and stress releasing,thereby increased the spallation resistance.It could be drawn that the effect of cyclic frequency was highly dependent on the scale adherence to the substrate.展开更多
在DD6单晶高温合金基体上,利用电子束物理气相沉积(EB-PVD)技术制备Ni Co Cr Al Y涂层,采用低压等离子喷涂(LPPS)技术制备Ni Co Cr Al YHf Si涂层,通过扫描电镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)、电子探针显微分析(EPMA)等手段研...在DD6单晶高温合金基体上,利用电子束物理气相沉积(EB-PVD)技术制备Ni Co Cr Al Y涂层,采用低压等离子喷涂(LPPS)技术制备Ni Co Cr Al YHf Si涂层,通过扫描电镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)、电子探针显微分析(EPMA)等手段研究了在1100℃下的热循环氧化和互扩散行为。结果表明,涂层显著提高了DD6基体的抗氧化能力,经100h的循环氧化后,涂层表面氧化层主要成分仍为α-Al2O3,依然发挥着较好的抗氧化保护作用。这两种涂层与基体之间形成了互扩散区(IDZ)和二次反应区(SRZ),IDZ和SRZ的厚度均随着循环氧化时间延长而增大;SRZ中析出的棒状与颗粒状的拓扑密堆相(TCP)含有W、Re、Mo等高熔点元素,其质量分数分别高达37.51%、14.22%和10.61%,TCP含量随着氧化时间而增多。活性元素Si、Hf对涂层中富Cr相和TGO的增长速率均有一定的抑制作用。展开更多
基金Funded by the National Natural Science Foundation of China(No.51175234)the Heights Talent Support Programs in Six Industrial Fields in Jiangsu Province(No.2011-JXQC069)
文摘The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900 ℃ for periods up to 2 h were conducted. Changes of the top surface morphology and microstructure were analyzed by scanning electron microscope (SEM), energy-dispersive spectra (EDS), transmission electron microscope (TEM) and X-ray diffraction technique (XRD), respectively. The weights were measured between the oxidation cycles to assess the oxidation of the specimens. The top surface microstructure after LP was characterized by highly tangled and dense dislocation arrangements and a high amount of twins. Protective oxidation layer was generated more quickly on the surface treated by LP. The average oxidation rate was about 50 % lower. A tiny homogeneous oxidation layer containing (Fe,Cr)2O3, NiCrO3 and Ni(A1,Cr)2O4 spinel was generated on the surface. The experimental results of cyclic oxidation tests show that specimens treated by LP have a better high temperature oxidation resistance, and the antistrip performance of the oxidation layer improves. Moreover, the effects of LP are strengthened with the increase of laser peening.
基金This work was supported by the National Nat- ural Science Foundation of China
文摘The cyclic oxidation resistance of cast Ni-base superalloy K38G and its sputtered micro-grained film were studied between 950℃ and room temper- ature in air.The results show that the weight gain of micrograined films is much less than that of cast al- loy during cyclic oxidation,and the resistance of micro-grained fihns is even better than that of the aluminide coating on the same alloy.On the surface of cast alloy K38G,complex oxide scales of Cr_2O_3, TiO_2 and NiCr_2O_4 spinel formed and they began to spall alter about 30 cycles of test.However,on the micro-grained films,continuous and thin α-Al_2O_2 scale was formed and did not spall throughout the cyclic oxidation test.
文摘The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering.At elevated temperatures,oxidation of the surfaces has an effective role in the fatigue strength and ductility of the alloys.In the present work,the effect of prior cyclic oxidation on the high temperature low cycle fatigue(HTLCF)properties of nickel-based superalloy Rene®80 has been assessed in the uncoated state and in the Pt-aluminide(Pt-Al)coated condition at 930℃.To apply cyclic oxidation,simulation of engine thermal exposure was carried out by exposing coated and uncoated fatigue specimens in the burner rig(120 cycles at 1100℃).The cyclic oxidation procedure led to a changing in the coating microstructure from the dual-phase(ξ-PtAl_(2)+β-(Ni,Pt)Al)to single phase(β-(Ni,Pt)Al).Results of HTLCF tests showed an improvement in the HTLCF life around 11.5%in the unexposed coated specimen(pre-cyclic oxidation)as compared to unexposed bare specimen,while this rise for exposed coated specimen(post-cyclic oxidation)was only 5%.Although a mixed mode fracture morphology(ductile and brittle)was observed on the fracture surfaces of failed specimens,the wider regions of brittle fracture belonged to exposed coated/uncoated ones.
基金the Key-Area Research and Development Program of Guangdong Province(2019B010936001)financially supported by the National Natural Science Foundation of China(Grant Nos.51671202 and 51301184)。
文摘A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.
基金supported by National Science and Technology Major Project(2017-VII-0012-0108)。
文摘Cyclic oxidation behavior of Ni Cr Al YSi+Ni Al/c BN abrasive coating at 900°C and the mechanical properties of the coating-substrate system were investigated.Results indicated that elemental interdiffusion occurred between the coating and substrate,which caused the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)during aluminization,while their compositions and structures changed with oxidation.Al N interfacial layer formed at c BN/metallic matrix interface during aluminization,while it transformed into multilayer oxides during oxidation.Due to the microstructural evolution of these interfaces,the fracture behavior and bending toughness of the system changed greatly during three-point bending tests.Besides,the damage mechanisms were discussed.
基金supported by the National Natural Science Foundation of China (Nos.51331005,51601192,51671188 and 11332010)the High Technology Research and Development Program of China (No.2014AA041701)
文摘The intrinsic relationship between the microstructure evolution and thermal fatigue behavior of a single-crystal cobalt-base superalloy has been investigated. The thermal fatigue tests are performed cyclically between room temperature and 1050 ℃ using V-notch plate specimens. Three states of thermal fatigue specimens are selected: the as-cast, solutionized as well as aged states. The solution treatment is carried out at 1260 ℃ for 24 h, which results in the dissolution of most of interdendritic continuous primary carbides. The subsequent aging treatment is carried out at 1100 ℃ for 100 h after solution treatment, resulting in the precipitation of a profusion of chain- and point-like M23C6 carbides in the matrix. The results indicate that the heat treatment can improve the thermal fatigue properties of the alloy and the effect of the solution treatment is more prominent than that of the aging treatment. The coarse and continuously distributed primary carbides in the as-cast state are changed into small and discontinuous distribution by heat treatment, which is the dominant factor in the improvement of thermal fatigue property. Additionally, the effect of oxidation behavior during thermal fatigue test on the thermal fatigue behavior is also studied.
基金Project supported by the Science and Technology Funds from Liaoning Education Department (2008564)the National Natural Science Foundation of China (50771100)
文摘Cyclic oxidation test is a fundamental method to assess lifetime of materials in high temperature environment.Cycle length or cyclic frequency is one important variable in cyclic oxidation testing.In present work,cyclic oxidation tests were performed on cast K38 alloys with 0 wt.%,0.1 wt.%,and 0.5 wt.% yttrium additions at 1 273 K respectively.Two cyclic frequencies were used to investigate the influence of cycle length (1 h vs.20 h) on the high temperature oxidation behavior of superalloy.The results showed that the degradation of cast K38 alloy critically was dependent on the cyclic frequency.The yttrium addition was beneficial to reducing scale-growth rate,improving the scale adhesion and stress releasing,thereby increased the spallation resistance.It could be drawn that the effect of cyclic frequency was highly dependent on the scale adherence to the substrate.
文摘在DD6单晶高温合金基体上,利用电子束物理气相沉积(EB-PVD)技术制备Ni Co Cr Al Y涂层,采用低压等离子喷涂(LPPS)技术制备Ni Co Cr Al YHf Si涂层,通过扫描电镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)、电子探针显微分析(EPMA)等手段研究了在1100℃下的热循环氧化和互扩散行为。结果表明,涂层显著提高了DD6基体的抗氧化能力,经100h的循环氧化后,涂层表面氧化层主要成分仍为α-Al2O3,依然发挥着较好的抗氧化保护作用。这两种涂层与基体之间形成了互扩散区(IDZ)和二次反应区(SRZ),IDZ和SRZ的厚度均随着循环氧化时间延长而增大;SRZ中析出的棒状与颗粒状的拓扑密堆相(TCP)含有W、Re、Mo等高熔点元素,其质量分数分别高达37.51%、14.22%和10.61%,TCP含量随着氧化时间而增多。活性元素Si、Hf对涂层中富Cr相和TGO的增长速率均有一定的抑制作用。