石墨烯负载的Co-Mo-S复合材料(Co-Mo-S/G)作为超级电容器的电极材料具有巨大的发展潜力。本研究采用简单的水热法制备了Co-Mo-S复合材料,并对所制得的Co-Mo-S/G复合材料的形貌结构和电学性能进行了分析。结果表明,硫化钴钼粒子均匀地分...石墨烯负载的Co-Mo-S复合材料(Co-Mo-S/G)作为超级电容器的电极材料具有巨大的发展潜力。本研究采用简单的水热法制备了Co-Mo-S复合材料,并对所制得的Co-Mo-S/G复合材料的形貌结构和电学性能进行了分析。结果表明,硫化钴钼粒子均匀地分布在石墨烯片层上,材料的比表面积为140.793 m 2/g,较大的比表面积有利于电解液离子和活性位点间的接触,从而增加电极材料的电学性能;在电流密度为1 A/g时,Co-Mo-S/G复合材料的比电容为1162 F/g,远高于单金属复合材料Co-S/G和Mo-S/G的比电容量。展开更多
A series of sulfur tolerant Co Mo/MgO Al 2O 3 TiO 2 catalysts promoted by TiO 2 were prepared by kneading method and characterized by temperature programmed reduction, temperature programmed sulfurization and in situ ...A series of sulfur tolerant Co Mo/MgO Al 2O 3 TiO 2 catalysts promoted by TiO 2 were prepared by kneading method and characterized by temperature programmed reduction, temperature programmed sulfurization and in situ infra red spectroscopy. The catalyst activity for water gas shift reaction was tested under atmosphere in an ordinary tubular reactor. The results indicate that TiO 2 promotes the activity of Co Mo/MgO Al 2O 3 TiO 2 catalyst and decreases the reducing and sulfurizing temperature by changing interaction between active composition and carrier. In situ infra red spectra show that TiO 2 decreases the saturation level of active Mo and increases the coordinate capacity of active Mo with CO.展开更多
文摘石墨烯负载的Co-Mo-S复合材料(Co-Mo-S/G)作为超级电容器的电极材料具有巨大的发展潜力。本研究采用简单的水热法制备了Co-Mo-S复合材料,并对所制得的Co-Mo-S/G复合材料的形貌结构和电学性能进行了分析。结果表明,硫化钴钼粒子均匀地分布在石墨烯片层上,材料的比表面积为140.793 m 2/g,较大的比表面积有利于电解液离子和活性位点间的接触,从而增加电极材料的电学性能;在电流密度为1 A/g时,Co-Mo-S/G复合材料的比电容为1162 F/g,远高于单金属复合材料Co-S/G和Mo-S/G的比电容量。
文摘A series of sulfur tolerant Co Mo/MgO Al 2O 3 TiO 2 catalysts promoted by TiO 2 were prepared by kneading method and characterized by temperature programmed reduction, temperature programmed sulfurization and in situ infra red spectroscopy. The catalyst activity for water gas shift reaction was tested under atmosphere in an ordinary tubular reactor. The results indicate that TiO 2 promotes the activity of Co Mo/MgO Al 2O 3 TiO 2 catalyst and decreases the reducing and sulfurizing temperature by changing interaction between active composition and carrier. In situ infra red spectra show that TiO 2 decreases the saturation level of active Mo and increases the coordinate capacity of active Mo with CO.