期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
A core-shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate 被引量:2
1
作者 Hui Liu Jingsha Li +5 位作者 Feng Du Luyun Yang Shunyuan Huang Jingfeng Gao Changming Li Chunxian Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1619-1629,共11页
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac... Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance. 展开更多
关键词 Electrocatalytic nitrate reduction Ammonia production Core–shell heterostructure Copper oxides nanowire arrays Cobalt oxidesflocs
下载PDF
Homogenous metallic deposition regulated by abundant lithiophilic sites in nickel/cobalt oxides nanoneedle arrays for lithium metal batteries
2
作者 Fenqiang Luo Dawei Xu +4 位作者 Yongchao Liao Minghao Chen Shuirong Li Dechao Wang Zhifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期11-18,I0001,共9页
Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li util... Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications. 展开更多
关键词 Nickel/cobalt oxides Nanoneedle arrays Lithiophilic sites Lithium metal batteries
下载PDF
Upcycling the spent graphite/LiCoO_(2) batteries for high-voltage graphite/LiCoPO_(4)-co-workable dual-ion batteries
3
作者 Miao Du Hongyan Lü +5 位作者 Kaidi Du Shuohang Zheng Xiaotong Wang Xiaotong Deng Ronghua Zeng Xinglong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1745-1751,共7页
The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such h... The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries. 展开更多
关键词 RECYCLE lithium cobalt oxide lithium cobalt phosphate GRAPHITE dual-ion batteries spent lithium-ion batteries
下载PDF
Effect of erbium substitution on thermoelectric properties of complex oxide Ca_3Co_2O_6 at high temperatures 被引量:2
4
作者 陆冬青 陈刚 +2 位作者 裴健 杨曦 线恒泽 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期168-172,共5页
Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution o... Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution on the thermoelectric properties of Ca3Co2O6. The crystal structure and microstructure were investigated using X-ray diffraction, infrared spectroscopy and scanning electron microscope. The electrical conductivity and Seebeck coefficient of the complex oxides were measured from 300 to 1073 K. The results showed that all the sampies were p-type semiconductors. The electrical conductivity increased with the increase in temperature. Er substitutions at Ca site affected carrier concentrations and carder mobility, resulting an increase in Seebeck coefficient and decrease in electrical conductivity. The power factor of Ca2.85Er0.15Co2O6 reached 10.66 μw/mK^2 at 1073 K. 展开更多
关键词 Ca3Co2O6 thermoelectric properties rare earth substitution cobalt oxide rare earths
下载PDF
Revealing the correlation between structure evolution and electrochemical performance of high-voltage lithium cobalt oxide 被引量:1
5
作者 Jiajia Wan Jianping Zhu +8 位作者 Yuxuan Xiang Guiming Zhong Xiangsi Liu Yixiao Li Kelvin H.L.Zhang Chaoyu Hong Jianming Zheng Kai Wang Yong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期786-794,共9页
Lithium cobalt oxide(LCO)is the dominating cathode materials for lithium-ion batteries(LIBs)deployed in consumer electronic devices for its superior volumetric energy density and electrochemical performances.The const... Lithium cobalt oxide(LCO)is the dominating cathode materials for lithium-ion batteries(LIBs)deployed in consumer electronic devices for its superior volumetric energy density and electrochemical performances.The constantly increasing demands of higher energy density urge to develop high-voltage LCO via a variety of strategies.However,the corresponding modification mechanism,especially the influence of the long-and short-range structural transitions at high-voltage on electrochemical performance,is still not well understood and needs further exploration.Based on ss-NMR,in-situ X-ray diffraction,and electrochemical performance results,it is revealed that the H3 to H1-3 phase transition dictates the structural reversibility and stability of LCO,thereby determining the electrochemical performance.The introduction of La and Al ions could postpone the appearance of H1-3 phase and induce various types of local environments to alleviate the volume variation at the atomic level,leading to better reversibility of the H1-3 phase and smaller lattice strain,and significantly improved cycle performance.Such a comprehensive long-range,local,and electronic structure characterization enables an in-depth understanding of the structural evolution of LCO,providing a guiding principle for developing high-voltage LCO for high energy density LIBs. 展开更多
关键词 Lithium cobalt oxide HIGH-VOLTAGE In-situ XRD Solid-state NMR Structure change
下载PDF
Surface-mediated iron on porous cobalt oxide with high energy state for efficient water oxidation electrocatalysis 被引量:1
6
作者 Jingsha Li Tao Hu +1 位作者 Changhong Wang Chunxian Guo 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期662-671,共10页
Surface engineering of active materials to generate desired energy state is critical to fabricate high-performance heterogeneous catalysts.However, its realization in a controllable level remains challenging. Using ox... Surface engineering of active materials to generate desired energy state is critical to fabricate high-performance heterogeneous catalysts.However, its realization in a controllable level remains challenging. Using oxygen evolution reaction(OER) as a model reaction, we report a surface-mediated Fe deposition strategy to electronically tailor surface energy states of porous Co_(3)O_(4)(Fe-pCo_(3)O_(4)) for enhanced activity towards OER. The Fe-pCo_(3)O_(4) exhibits a low overpotential of 280 mV to reach an OER current density of 100 mA cm^(-2), and a fast-kinetic behavior with a low Tafel slop of 58.2 mV dec^(-1), outperforming Co_(3)O_(4)-based OER catalysts recently reported and also the noble IrO_(2). The engineered material retains 100% of its original activity after operating at an overpotential of 350 m V for 100 h. A combination of theoretical calculations and experimental results finds out that the surface doped Fe promotes a high energy state and desired coordination environment in the near surface region, which enables optimized OER intermediates binding and favorably changes the rate-determining step. 展开更多
关键词 Surficial Fe doping Cobalt oxides High energy state Water oxidation Oxygen evolution reactions
下载PDF
Catalytic methanation reaction over alumina supported cobalt oxide doped noble metal oxides for the purification of simulated natural gas
7
作者 Wan Azelee Wan Abu Bakar Rusmidah Alil +2 位作者 Abdul Aziz Abdul Kadir Salmiah Jamal Mat Rosid Nurul Shafeeqa Mohammad 《燃料化学学报》 EI CAS CSCD 北大核心 2012年第7期822-830,共9页
A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination te... A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co(10∶90)/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co(10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co(10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis(EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co(10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co(10∶90)/Al2O3 catalyst. 展开更多
关键词 natural gas cobalt oxide noble metal catalyst methanation reaction
下载PDF
Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Co_(x)(CoO)_(1–x) catalyst for CO_(2) hydrogenation
8
作者 Kun Zhao Marco Calizzi +6 位作者 Emanuele Moioli Mo Li Alexandre Borsay Loris Lombardo Robin Mutschler Wen Luo Andreas Zuttel 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期241-250,I0009,共11页
The relation between catalytic reactivities and metal/metal oxide ratios, as well as the functions of the metal and the metal oxides were investigated in the CO_2 hydrogenation reaction over highly active Co_x(CoO)_(1... The relation between catalytic reactivities and metal/metal oxide ratios, as well as the functions of the metal and the metal oxides were investigated in the CO_2 hydrogenation reaction over highly active Co_x(CoO)_(1–x)catalysts in operando. The catalytic reactivity of the samples in the CO_2 methanation improves with the increased Co O concentration. Strikingly, the sample with the highest concentration of CoO, i.e., Co_(0.2)(CoO)_(0.8), shows activity at temperatures lower than 200 °C where the other samples with less CoO are inactive. The origins of this improvement are the increased amount and moderate binding of adsorbed CO_2 on CoO sites. The derivative adsorption species are found to be intermediates of the CH4 formation. The metallic Co functions as the electronically catalytic site which provides electrons for the hydrogenation steps. As a result, an abundant amount of CoO combined with Co is the optimal composition of the catalyst for achieving the highest reactivity for CO_2 hydrogenation. 展开更多
关键词 Cobalt and cobalt oxide REACTIVITY CO_(2)hydrogenation Active site Adsorption Activation energy
下载PDF
Co/Fe oxide and Ce_(0.8)Gd_(0.2)O_(2-δ) composite interlayer for solid oxide electrolysis cell
9
作者 Jingbo Yan Lei Shang +2 位作者 Zhe Zhao Dingrong Ou Mojie Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第5期840-844,共5页
A composite interlayer comprised of gadolinia doped ceria(GDC) and Co/Fe oxide was prepared and investigated for solid oxide electrolysis cell with yttrium stabilized zirconia(YSZ) electrolyte and LaSrCoFeO(LSCF... A composite interlayer comprised of gadolinia doped ceria(GDC) and Co/Fe oxide was prepared and investigated for solid oxide electrolysis cell with yttrium stabilized zirconia(YSZ) electrolyte and LaSrCoFeO(LSCF) anode. The interlayer was constructed of a base layer of GDC and a top layer of discrete CoO/FeCoOparticles. The presence of the GDC layer drastically alleviated the undesired reactions between LSCF and YSZ, and the presence of Co/Fe oxide led to further performance improvement. At 800 °C and 45% humidity, the cell with 70% Co/Fe-GDC interlayer achieved 0.98 A/cmat 1.18 V, 14% higher than the cell without Co/Fe oxide. Electrochemical impedance spectroscopy(EIS) revealed that with higher Co/Fe content, both the ohmic resistance and the polarization resistance of the cell were reduced. It is suggested that Co/Fe oxide can react with the Sr species segregated from LSCF and Sr(Co,Fe)O, a compound with high catalytic activity and electronic conductivity. The Sr-capturing ability of Co/Fe oxide in combination with the Sr-blocking ability of GDC layer can effectively suppress the undesired reaction between LSCF and YSZ, and consequently improve the cell performance. 展开更多
关键词 Solid oxide electrolysis cell Ceria interlayer Cobalt oxide Sr segregation
下载PDF
Porous Cobalt Oxide@Layered Double Hydroxide Core-Shell Architectures on Nickel Foam as Electrode for Supercapacitor
10
作者 Zhang Luojiang Hui Kwan San 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期603-610,共8页
The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide... The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide(Co_3O_4)nanowire cores are grown on nickel foam prior to the growth of layered double hydroxide(LDH)shells is fabricated.Hydrothermal precipitation and thermal treatment result in homogeneous forests of 70-nm diameter Co_3O_4 nanowire,which are wrapped in LDH-nanosheet-built porous covers through a liquid phase deposition method.Due to the unique core-shell architecture and the synergetic effects of Co_3O_4and NiAl-LDH,the obtained Co_3O_4@LDH electrode exhibits a capacitance of 1 133.3F/g at a current density of 2A/g and 688.8F/g at 20A/g(5.3F/cm^(2 )at 9.4mA/cm^(2 )and 3.2F/cm^(2 )at 94mA/cm^2),which are better than those of the individual Co_3O_4nanowire.Moreover,the electrode shows excellent cycling performance with a retention rate of 90.4%after 3 000cycles at a current density of 20A/g. 展开更多
关键词 CORE-SHELL cobalt oxide layered double hydroxide(LDH) nickel foam supercapacitor(SC)
下载PDF
Solvothermal Synthesis and Electrochemical Properties of Octahedral Cobalt Oxide Decorated with Ag_2O
11
作者 李洋 REN Ping +2 位作者 WU Wenjian CHEN Changzhao WU Mingzai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期568-573,共6页
Octahedral CoO with nanostructures decorated with Ag nanoparticles was prepared via a facile solvothermal approach. After being annealed at 500 ℃ for 1 h, an electrochemical capacitor material of Co3O4 decorated with... Octahedral CoO with nanostructures decorated with Ag nanoparticles was prepared via a facile solvothermal approach. After being annealed at 500 ℃ for 1 h, an electrochemical capacitor material of Co3O4 decorated with Ag2O was obtained. The cyclic voltammetry and galvanostatic charge-discharge were used to evaluate the electrochemical properties of the as-prepared products. The results indicated that the as-prepared samples exhibited fine pseudo-capacitive performance, and the surface modifications of Ag2O can significantly increase the capacitance of the Co3O4 material. The specific capacitance of Ag2O/Co3O4 composite electrode was up to 217.6 F·g^-1, which was 3.35 times as high as that of pure Co3O4. Moreover, Ag2O/Co3O4 composite showed an excellent cycle performance, and 65.3% of specific capacitance was maintained after 200 cycles. 展开更多
关键词 cobalt oxide silver oxide octahedral electrochemical
下载PDF
Upcycling of spent LiCoO_(2) cathodes via nickel- and manganese-doping 被引量:5
12
作者 Nianji Zhang Wenjing Deng +1 位作者 Zhixiao Xu Xiaolei Wang 《Carbon Energy》 SCIE CAS CSCD 2023年第1期247-256,共10页
Direct recycling has been regarded as one of the most promising approaches to dealing with the increasing amount of spent lithium‐ion batteries(LIBs).However,the current direct recycling method remains insufficient t... Direct recycling has been regarded as one of the most promising approaches to dealing with the increasing amount of spent lithium‐ion batteries(LIBs).However,the current direct recycling method remains insufficient to regenerate outdated cathodes to meet current industry needs as it only aims at recovering the structure and composition of degraded cathodes.Herein,a nickel(Ni)and manganese(Mn)co‐doping strategy has been adopted to enhance LiCoO_(2)(LCO)cathode for next‐generation high‐performance LIBs through a conventional hydrothermal treatment combined with short annealing approach.Unlike direct recycling methods that make no changes to the chemical composition of cathodes,the unique upcycling process fabricates a series of cathodes doped with different contents of Ni and Mn.The regenerated LCO cathode with 5%doping delivers excellent electrochemical performance with a discharge capacity of 160.23 mAh g^(−1) at 1.0 C and capacity retention of 91.2%after 100 cycles,considerably surpassing those of the pristine one(124.05 mAh g^(−1) and 89.05%).All results indicate the feasibility of such Ni–Mn co‐doping‐enabled upcycling on regenerating LCO cathodes. 展开更多
关键词 direct recycling lithium cobalt oxide Ni–Mn co-doping spent lithium-ion batteries upcycling
下载PDF
An effective bimetallic oxide catalyst of RuO_(2)-Co_(3)O_(4) for alkaline overall water splitting
13
作者 Fangfang Ren Jiayu Xu Ligang Feng 《Nano Research》 SCIE EI CSCD 2024年第5期3785-3793,共9页
The rational design of effective bifunctional electrocatalysts is of paramount importance for overall water-splitting technology in sustainable energy conversion.Herein,bimetallic oxide catalysts(RuO_(2)-Co_(3)O_(4))d... The rational design of effective bifunctional electrocatalysts is of paramount importance for overall water-splitting technology in sustainable energy conversion.Herein,bimetallic oxide catalysts(RuO_(2)-Co_(3)O_(4))derived from Ru combined MOF-derivatives(MOF=metal-organic framework)were demonstrated effective for overall water splitting in an alkaline solution,owing to the combined merits such as the two-dimensional interconnected network structure,the synergetic coupling effects and increased chemical stability.The as-prepared RuO_(2)-Co_(3)O_(4) only requires an overpotential of 260 mV for oxygen evolution and 75 mV for hydrogen evolution at 10 mA/cm^(2) in 1 M KOH solution;a low cell voltage of 1.54 V was required to reach the kinetic current density of 10 mA/cm^(2) for the water electrolysis when supporting on glass carbon electrode,and very good stability for 40 h was observed.Experimental and theoretical results demonstrated the electronic structure optimization of bimetallic RuO_(2)-Co_(3)O_(4) compared to the individual metal oxide,which promoted interface charges redistribution and the d-band center downshift,resulting in increased activity and stability for water-splitting reactions.This work provides a feasible approach for developing bimetallic oxides for application in energy-relevant electrocatalysis reactions. 展开更多
关键词 ruthenium dioxide cobalt oxide metal-organic frameworks HETEROSTRUCTURES overall water splitting
原文传递
Enhancing electrochemical capacity and interfacial stability of lithium-ion batteries through side reaction modulation with ultrathin carbon nanotube film and optimized lithium cobalt oxide particle size
14
作者 Wei Xi Xiaogang Xia +2 位作者 Jiacheng Zhu Dehua Yang Sishen Xie 《Nano Research》 SCIE EI CSCD 2024年第8期7230-7241,共12页
Lithium cobalt oxide(LCO),the first commercialized cathode active material for lithium-ion batteries,is known for high voltage and capacity.However,its application has been limited by relatively low capacity and stabi... Lithium cobalt oxide(LCO),the first commercialized cathode active material for lithium-ion batteries,is known for high voltage and capacity.However,its application has been limited by relatively low capacity and stability at high C-rates.Reducing particle size is considered one of the most straightforward and effective strategies to enhance ion transfer,thus increasing the rate performance.However,side reactions are simultaneously enhanced as the specific surface area increases.Herein,we investigate the impact of LCO particles with varying size distributions and optimize the particle size.To modulate the side reactions associated with particle size reduction,an ultrathin carbon nanotube film(UCNF)is introduced to coat the cathode surface.With this simple process and optimized particle size,the rate performance improves significantly,normal commercial LCO achieves 118 mA·h·g^(−1)at 3.0–4.3 V and 20 C(0.72 mA·h·cm^(−2)),corresponding to power density of 8732 W·kg^(−1).This method is applied to high voltage as well,152 mA·h·g^(−1)at 3.0–4.6 V and 20 C(0.99 mA·h·cm^(−2))was achieved with high-voltage LCO(HVLCO),corresponding to power density of 11,552 W·kg^(−1).The cycling stability is also enhanced,with the capacity retention maintaining more than 96%after 100 cycles at 0.1 C.For the first time,UCNF is demonstrated to suppress the excessive decomposition of the electrolytes and solvents by blocking electron injection/extraction between LCO and electrolyte solution.Our findings provide a simple method for improving LCO rate performance,especially at high C-rates. 展开更多
关键词 lithium-ion batteries lithium cobalt oxides carbon nanomaterials side reactions
原文传递
High-Voltage and Fast-Charging Lithium Cobalt Oxide Cathodes: From Key Challenges and Strategies to Future Perspectives
15
作者 Gongrui Wang Zhihong Bi +3 位作者 Anping Zhang Pratteek Das Hu Lin Zhong-Shuai Wu 《Engineering》 SCIE EI CAS 2024年第6期105-127,共23页
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu... Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs. 展开更多
关键词 Lithium cobalt oxide High energy/power density Fast-charging High-voltage Lithium-ion battery
下载PDF
碱促进的钴酸镁催化剂上的氧化亚氮分解(英文) 被引量:9
16
作者 Bahaa M. ABU-ZIED 《催化学报》 SCIE EI CAS CSCD 北大核心 2011年第2期264-272,共9页
The direct decomposition of N2O was investigated over a series of magnesium cobaltite catalysts,MgxCo1-xCo2O4(0.0 ≤ x ≤ 1.0) ,which were prepared by the thermal decomposition of stoichiometric amounts of magnesium h... The direct decomposition of N2O was investigated over a series of magnesium cobaltite catalysts,MgxCo1-xCo2O4(0.0 ≤ x ≤ 1.0) ,which were prepared by the thermal decomposition of stoichiometric amounts of magnesium hydroxide and cobalt acetate. The thermal genesis of the different catalysts from their precursors was explored using thermogravimetric analysis,differential thermal analysis,and X-ray diffraction. Texture analysis was carried out using N2 adsorption at -196 °C. We found that all the catalysts that were calcined at 500 °C have a spinel structure. N2O decomposition activity was found to increase with an increase in the spinel structure's magnesium content. The influence of alkali cation promoters(Li,Na,K,and Cs) on the activity of the most active catalyst in the MgxCo1-xCo2O4 series,i.e. MgCo2O4,was also investigated. The sequence of the promotional effect was found to be: un-promoted < Li < Na < Cs < K-promoted catalyst. The reason for the increase in activity for the added alkali cations was electronic in nature. Additionally,the dependence of the activity on the K/Co ratio was also determined. The highest activity was obtained for the catalyst with a K/Co ratio of 0.05. A continuous decrease in activity was obtained for higher K/Co ratios. This decrease in activity was attributed to the elimination of mesoporosity in the catalysts with K/Co ratios > 0.05,based on N2 adsorption and scanning electron microscopy results. 展开更多
关键词 nitrous oxide cobalt oxide magnesium cobaltite SPINEL alkali promotion
下载PDF
Sol-gel preparation and characterization of Co_3O_4 nanocrystals 被引量:13
17
作者 Jinzhang Gao, Yanchun Zhao, Wu Yang, Jianniao Tian, Fei Guan. and Yongjun MaChemistry and Chemical Engineering College, Northwest Normal University, Lanzhou 730070, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第1期54-57,共4页
A new citrate acid-hydrazine sol-gel route for preparation of Co3O4 nanoparticles has been developed. Co3O4 nanoparticles with different particle-sizes and morphology were prepared at different heat-treatment temperat... A new citrate acid-hydrazine sol-gel route for preparation of Co3O4 nanoparticles has been developed. Co3O4 nanoparticles with different particle-sizes and morphology were prepared at different heat-treatment temperatures and the pure cubic nanocrystals of Co3O4 were obtained at 600℃. The synthesis process was monitored by infrared spectroscopy (IR), thermal gravimetric and differential thermal analysis (TG-DTA). The structure and morphology of Co3O4 nanocrystals were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray-photoelectron spectroscopy (XPS). The infrared absorption bands blue-shifted with particle size decreasing, which could be attributed to increasing surface effect. XPS results showed that predominant species at surface layers of Co3O4 nanocrystals are octahedral Co (Ⅲ). 展开更多
关键词 sol-gel route NANOCRYSTALS cobalt oxide
下载PDF
Porous Co_(2)VO_(4) Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries 被引量:3
18
作者 Jinghui Ren Zhenyu Wang +12 位作者 Peng Xu Cong Wang Fei Gao Decheng Zhao Shupei Liu Han Yang Di Wang Chunming Niu Yusong Zhu Yutong Wu Xiang Liu Zhoulu Wang Yi Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期107-120,共14页
High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety is... High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density.Here we hypothesize that a cobalt vanadate oxide,Co_(2)VO_(4),can be attractive anode material for fast-charging LIBs due to its high capacity(~1000 mAh g^(−1))and safe lithiation potential(~0.65 V vs.Li^(+)/Li).The Li+diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15×10^(-10) cm^(2) s^(−1),proving Co_(2)VO_(4) a promising anode in fast-charging LIBs.A hexagonal porous Co2VO4 nanodisk(PCVO ND)structure is designed accordingly,featuring a high specific surface area of 74.57 m^(2) g^(−1) and numerous pores with a pore size of 14 nm.This unique structure succeeds in enhancing Li^(+) and electron transfer,leading to superior fast-charging performance than current commercial anodes.As a result,the PCVO ND shows a high initial reversible capacity of 911.0 mAh g^(−1) at 0.4 C,excellent fast-charging capacity(344.3 mAh g^(−1) at 10 C for 1000 cycles),outstanding long-term cycling stability(only 0.024% capacity loss per cycle at 10 C for 1000 cycles),confirming the commercial feasibility of PCVO ND in fast-charging LIBs. 展开更多
关键词 Lithium-ion batteries ANODE Fast-charging HIGH-ENERGY Cobalt vanadate oxide
下载PDF
Improved electrochemical performances of high voltage LiCoO_2 with tungsten doping 被引量:2
19
作者 张杰男 李庆浩 +2 位作者 李泉 禹习谦 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期605-611,共7页
The effects of tungsten W doping and coating on the electrochemical performance of LiCoO2 cathode are compara- tively studied in this work. The amount of modification component is as low as 0.1 wt% and 0.3 wt% respect... The effects of tungsten W doping and coating on the electrochemical performance of LiCoO2 cathode are compara- tively studied in this work. The amount of modification component is as low as 0.1 wt% and 0.3 wt% respectively. After 100 cycles between 3.0 V-4.6 V, 0.1 wt% W doping provides an optimized capacity retention of 72.3%. However, W coating deteriorates battery performance with capacity retention of 47.8%, even lower than bare LiCoO2 of 55.7%. These different electrochemical performances can be attributed to the surface aggregation of W between doping and coating methods. W substitution is proved to be a promising method to develop high voltage cathodes. Practical performance relies on detailed synthesis method. 展开更多
关键词 CATHODE lithium-ion batteries lithium cobalt oxide DOPING COATING
下载PDF
Interface Engineering of CoS/CoO@N‑Doped Graphene Nanocomposite for High‑Performance Rechargeable Zn–Air Batteries 被引量:4
20
作者 Yuhui Tian Li Xu +6 位作者 Meng Li Ding Yuan Xianhu Liu Junchao Qian Yuhai Dou Jingxia Qiu Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期29-43,共15页
Low cost and green fabrication of high-performance electrocatalysts with earth-abundant resources for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are crucial for the large-scale application of rech... Low cost and green fabrication of high-performance electrocatalysts with earth-abundant resources for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are crucial for the large-scale application of rechargeable Zn-air batteries(ZABs).In this work,our density functional theory calculations on the electrocatalyst suggest that the rational construction of interfacial structure can induce local charge redistribution,improve the electronic conductivity and enhance the catalyst stability.In order to realize such a structure,we spatially immobilize heterogeneous CoS/CoO nanocrystals onto N-doped graphene to synthesize a bifunctional electrocatalyst(CoS/CoO@NGNs).The optimization of the composition,interfacial structure and conductivity of the electrocatalyst is conducted to achieve bifunctional catalytic activity and deliver outstanding efficiency and stability for both ORR and OER.The aqueous ZAB with the as-prepared CoS/CoO@NGNs cathode displays a high maximum power density of 137.8 mW cm^−2,a specific capacity of 723.9 mAh g^−1 and excellent cycling stability(continuous operating for 100 h)with a high round-trip efficiency.In addition,the assembled quasi-solid-state ZAB also exhibits outstanding mechanical flexibility besides high battery performances,showing great potential for applications in flexible and wearable electronic devices. 展开更多
关键词 Cobalt sulfide/oxide HETEROSTRUCTURE INTERFACE Bifunctional electrocatalyst Rechargeable Zn-air battery
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部