The cosmopolitan calcifying alga Emiliania huxleyi is one of the most abundant bloom forming coccolithophore species in the oceans and plays an important role in global biogeochemical cycling. Coccolithoviruses are a ...The cosmopolitan calcifying alga Emiliania huxleyi is one of the most abundant bloom forming coccolithophore species in the oceans and plays an important role in global biogeochemical cycling. Coccolithoviruses are a major cause of coccolithophore bloom termination and have been studied in laboratory, mesocosm and open ocean studies. However, little is known about the dynamic interactions between the host and its viruses, and less is known about the natural diversity and role of functionally important genes within natural coccolithovirus communities. Here, we investigate the temporal and spatial distribution of coccolithoviruses by the use of molecular fingerprinting techniques PCR, DGGE and genomie sequencing. The natural biodiversity of the virus genes encoding the major capsid protein (MCP) and serine palmitoyltransferase (SPT) were analysed in samples obtained from the Atlantic Meridional Transect (AMT), the North Sea and the L4 site in the Westem Channel Observatory. We discovered nine new coccolithovirus genotypes across the AMT and L4 site, with the majority of MCP sequences observed at the deep chlorophyll maximum layer of the sampled sites on the transect. We also found four new SPT gene variations in the North Sea and at L4. Their translated fragments and the full protein sequence of SPT from laboratory strains EhV-86 and EhV-99B 1 were modelled and revealed that the theoretical fold differs among strains. Variation identified in the structural distance between the two domains of the SPT protein may have an impact on the catalytic capabilities of its active site. In summary, the combined use of 'standard' markers (i.e. MCP), in combination with metabolically relevant markers (i.e. SPT) are useful in the study of the phylogeny and functional biodiversity of coccolithoviruses, and can provide an interesting intracellular insight into the evolution of these viruses and their ability to infect and replicate within their algal hosts.展开更多
Emiliania huxleyi is the most prominent modern coccolithophore,a group of marine unicellular eukaryotes that play a critical role in ocean biogeochemistry.Coccolithoviruses are large double stranded DNA viruses,which ...Emiliania huxleyi is the most prominent modern coccolithophore,a group of marine unicellular eukaryotes that play a critical role in ocean biogeochemistry.Coccolithoviruses are large double stranded DNA viruses,which is responsible for the demise of large oceanic blooms formed by E.huxleyi.E.huxleyi virus(EhVs)acquired a series of enzyme-coding genes predicted to be involved in the sphingolipid biosynthesis by horizontal gene transfer between virus-host.Currently,there is limited experimental validation identifying the functions of these genes in EhV.Genetic transformation of eukaryotic cells is a powerful tool to get an insight into gene functions of the studied organisms.Serine palmitoyltransferase(SPT)catalyzes the first committed step in de novo sphingolipid biosynthetic pathway.Here,a novel vector system for the transformation of E.huxleyi was designed.It contained fragments of promoter and terminator sequences of E.huxleyi endogenic fucoxanthin chlorophyll a/c-binding protein gene“fcp”and harbored EhV-99B1 spt gene.The resultant recombinant transformation vectors pEhux-I-spt and pEhux-II were co-transferred into E.huxleyi BOF92 by electroporation.Transformants were obtained upon glufosinate-ammonium selection,and confirmed by Southern hybridization,genome PCR,qRT-PCR and Western blot screening of spt gene,which indicated that spt gene was integrated into the nuclear genome and was expressed at the mRNA and protein levels.The expression of the viral spt gene led to differences in lipid compositions analyzed using thin-layer chromatography(TLC).The results present the genetic transformation system for E.huxleyi,providing additional genetic resource with potential for exploring basic biological questions such as the virus-host interactions.展开更多
Lipidomics approach by UPLC-Q-Exactive-MS was used for the identification,quantification,comparison,and characterization of sphingolipids in virus infected marine Emiliania huxleyi BOF92 cells.The results show that 16...Lipidomics approach by UPLC-Q-Exactive-MS was used for the identification,quantification,comparison,and characterization of sphingolipids in virus infected marine Emiliania huxleyi BOF92 cells.The results show that 16 significantly changed sphingolipids(including Cer,CerG1,and SPHm)were identified during viral infection.Our data confirmed previously recognized facts that viral infection led to a shift toward virus-specific sphingolipids,which is consistent with the down-regulation of genes involved in the host de novo sphingolipid biosynthesis.Moreover,we revealed the upregulation of virusencoded homologous genes participating in de novo sphingolipids biosynthesis and virus-specific hydroxylated long chain bases(LCBs)as phytoCer,suggesting the competitive inhibition of host sphingolipid synthesis to produce the required building blocks for viral production,replication,and assembly.Additionally,Cer 40꞉1;2,Cer 40꞉2;2 isomer,and CerG139꞉0;2,Cer 39꞉0;2 as novel metabolite markers might indicate the general dysfunctions in E.huxleyi in response to viral infection.Our results show that viral infection led to a profound remodeling of host sphingolipidome,by which viruses depend on the hijacking of host sphingolipid metabolism to support the viral life cycle.展开更多
文摘The cosmopolitan calcifying alga Emiliania huxleyi is one of the most abundant bloom forming coccolithophore species in the oceans and plays an important role in global biogeochemical cycling. Coccolithoviruses are a major cause of coccolithophore bloom termination and have been studied in laboratory, mesocosm and open ocean studies. However, little is known about the dynamic interactions between the host and its viruses, and less is known about the natural diversity and role of functionally important genes within natural coccolithovirus communities. Here, we investigate the temporal and spatial distribution of coccolithoviruses by the use of molecular fingerprinting techniques PCR, DGGE and genomie sequencing. The natural biodiversity of the virus genes encoding the major capsid protein (MCP) and serine palmitoyltransferase (SPT) were analysed in samples obtained from the Atlantic Meridional Transect (AMT), the North Sea and the L4 site in the Westem Channel Observatory. We discovered nine new coccolithovirus genotypes across the AMT and L4 site, with the majority of MCP sequences observed at the deep chlorophyll maximum layer of the sampled sites on the transect. We also found four new SPT gene variations in the North Sea and at L4. Their translated fragments and the full protein sequence of SPT from laboratory strains EhV-86 and EhV-99B 1 were modelled and revealed that the theoretical fold differs among strains. Variation identified in the structural distance between the two domains of the SPT protein may have an impact on the catalytic capabilities of its active site. In summary, the combined use of 'standard' markers (i.e. MCP), in combination with metabolically relevant markers (i.e. SPT) are useful in the study of the phylogeny and functional biodiversity of coccolithoviruses, and can provide an interesting intracellular insight into the evolution of these viruses and their ability to infect and replicate within their algal hosts.
基金Supported by the National Natural Science Foundation of China(Nos.41576166,21707042,31771972)the Fujian Province Natural Science Foundation of China(Nos.2019J01696,2017J01447,2017J01636)。
文摘Emiliania huxleyi is the most prominent modern coccolithophore,a group of marine unicellular eukaryotes that play a critical role in ocean biogeochemistry.Coccolithoviruses are large double stranded DNA viruses,which is responsible for the demise of large oceanic blooms formed by E.huxleyi.E.huxleyi virus(EhVs)acquired a series of enzyme-coding genes predicted to be involved in the sphingolipid biosynthesis by horizontal gene transfer between virus-host.Currently,there is limited experimental validation identifying the functions of these genes in EhV.Genetic transformation of eukaryotic cells is a powerful tool to get an insight into gene functions of the studied organisms.Serine palmitoyltransferase(SPT)catalyzes the first committed step in de novo sphingolipid biosynthetic pathway.Here,a novel vector system for the transformation of E.huxleyi was designed.It contained fragments of promoter and terminator sequences of E.huxleyi endogenic fucoxanthin chlorophyll a/c-binding protein gene“fcp”and harbored EhV-99B1 spt gene.The resultant recombinant transformation vectors pEhux-I-spt and pEhux-II were co-transferred into E.huxleyi BOF92 by electroporation.Transformants were obtained upon glufosinate-ammonium selection,and confirmed by Southern hybridization,genome PCR,qRT-PCR and Western blot screening of spt gene,which indicated that spt gene was integrated into the nuclear genome and was expressed at the mRNA and protein levels.The expression of the viral spt gene led to differences in lipid compositions analyzed using thin-layer chromatography(TLC).The results present the genetic transformation system for E.huxleyi,providing additional genetic resource with potential for exploring basic biological questions such as the virus-host interactions.
基金Supported by the National Natural Science Foundation of China(Nos.42076086,41576166)the Natural Science Foundation of Fujian Province(No.2020J05138)+1 种基金the Education and Research Project for Young and Middle-aged Teachers of Fujian Province(No.JAT190343)the Cultivation Plan for Distinguished Young Scholars in Fujian Universities。
文摘Lipidomics approach by UPLC-Q-Exactive-MS was used for the identification,quantification,comparison,and characterization of sphingolipids in virus infected marine Emiliania huxleyi BOF92 cells.The results show that 16 significantly changed sphingolipids(including Cer,CerG1,and SPHm)were identified during viral infection.Our data confirmed previously recognized facts that viral infection led to a shift toward virus-specific sphingolipids,which is consistent with the down-regulation of genes involved in the host de novo sphingolipid biosynthesis.Moreover,we revealed the upregulation of virusencoded homologous genes participating in de novo sphingolipids biosynthesis and virus-specific hydroxylated long chain bases(LCBs)as phytoCer,suggesting the competitive inhibition of host sphingolipid synthesis to produce the required building blocks for viral production,replication,and assembly.Additionally,Cer 40꞉1;2,Cer 40꞉2;2 isomer,and CerG139꞉0;2,Cer 39꞉0;2 as novel metabolite markers might indicate the general dysfunctions in E.huxleyi in response to viral infection.Our results show that viral infection led to a profound remodeling of host sphingolipidome,by which viruses depend on the hijacking of host sphingolipid metabolism to support the viral life cycle.