Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulti...Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.展开更多
In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of t...In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in...In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.展开更多
Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families ...Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.展开更多
Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which f...Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which facilitates code generation, verification, and performance tuning using compiler directives within a Function Unit Test framework. In this paper, we present a SPEL extension that leverages the version control system (e.g., Git) to autonomous code generation and demonstrate its application to continuous code integration and development of the ELM software system. The study can benefit the scientific software development community.展开更多
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e...Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.展开更多
This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Syste...This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.展开更多
Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique wa...Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.展开更多
This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Sp...This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel.展开更多
Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are...Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified.展开更多
Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content deliver...Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.展开更多
A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,...A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,and a genetic-based method is adopted to select the offsprings.The individuals in the offspring are decoded in Gray code way to keep Hamming distance,and then are evaluated to obtain the best one with the lowest cost value in each iteration.The algorithm is performed iteratively for all parameters one by one until the cost value satisfies the stop condition or the number of iterations is reached.The GCO algorithm is demonstrated for classification tasks in Iris and MNIST datasets,and their performance are compared by those with the Bayesian optimization algorithm and binary code based optimization algorithm.The simulation results show that the GCO algorithm can reach high accuracies steadily for quantum classification tasks.Importantly,the GCO algorithm has a robust performance in the noise environment.展开更多
Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representation...Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality.展开更多
In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete mem...In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.展开更多
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co...Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.展开更多
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount impo...Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%.展开更多
Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw...With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations.展开更多
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805。
文摘Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.
基金supported in part by China NSF under Grants No.61771081 and 62072064the Fundamental Research Funds for the Central Universities(China)under Grant cstc2019jcyjmsxmX0110+2 种基金the Project of Chongqing Natural Science Foundation under Grant CSTB2022NSCQ-MSX0990Science and Technology Research Project of Chongqing Education Commission under Grant KJQN202000612the Venture and Innovation Support Program for Chongqing Overseas Returnees under Grant cx2020070.
文摘In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported by the National Natural Science Foundation of China(61601147)the Beijing Natural Science Foundation(L182032)。
文摘In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.
基金support this work is the Key Research and Development Program of Heilongjiang Province,specifically Grant Number 2023ZX02C10.
文摘Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.
文摘Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which facilitates code generation, verification, and performance tuning using compiler directives within a Function Unit Test framework. In this paper, we present a SPEL extension that leverages the version control system (e.g., Git) to autonomous code generation and demonstrate its application to continuous code integration and development of the ELM software system. The study can benefit the scientific software development community.
基金supported in part by the National Natural Science Foundation of China Project under Grant 62075147the Suzhou Industry Technological Innovation Projects under Grant SYG202348.
文摘Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.
基金supported by the Fundamental Research Funds for the Central Universities(FRF-TP20-062A1)Guangdong Basic and Applied Basic Research Foundation(2021A1515110070)。
文摘This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.
文摘Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.
文摘This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel.
基金supported by the National Key R&D Program of China(No.2021YFE0110900)the National Natural Science Foundation of China(Nos.U22B2078 and 11991033)。
文摘Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,61831008)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297,2021A1515011572)Shenzhen Science and Technology Program ZDSYS20210623091808025,Stable Support Plan Program GXWD20231129102638002.
文摘Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62375140)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX190900).
文摘A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,and a genetic-based method is adopted to select the offsprings.The individuals in the offspring are decoded in Gray code way to keep Hamming distance,and then are evaluated to obtain the best one with the lowest cost value in each iteration.The algorithm is performed iteratively for all parameters one by one until the cost value satisfies the stop condition or the number of iterations is reached.The GCO algorithm is demonstrated for classification tasks in Iris and MNIST datasets,and their performance are compared by those with the Bayesian optimization algorithm and binary code based optimization algorithm.The simulation results show that the GCO algorithm can reach high accuracies steadily for quantum classification tasks.Importantly,the GCO algorithm has a robust performance in the noise environment.
基金funded by the Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations.However,due to limitations in code representation and neural network design,the validity and practicality of the model still need to be improved.Additionally,due to differences in programming languages,most methods lack cross-language detection generality.To address these issues,in this paper,we analyze the shortcomings of previous code representations and neural networks.We propose a novel hierarchical code representation that combines Concrete Syntax Trees(CST)with Program Dependence Graphs(PDG).Furthermore,we introduce a Tree-Graph-Gated-Attention(TGGA)network based on gated recurrent units and attention mechanisms to build a Hierarchical Code Representation learning-based Vulnerability Detection(HCRVD)system.This system enables cross-language vulnerability detection at the function-level.The experiments show that HCRVD surpasses many competitors in vulnerability detection capabilities.It benefits from the hierarchical code representation learning method,and outperforms baseline in cross-language vulnerability detection by 9.772%and 11.819%in the C/C++and Java datasets,respectively.Moreover,HCRVD has certain ability to detect vulnerabilities in unknown programming languages and is useful in real open-source projects.HCRVD shows good validity,generality and practicality.
基金financially supported in part by National Key R&D Program of China(No.2018YFB1801402)in part by Huawei Technologies Co.,Ltd.
文摘In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.
基金supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
文摘Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%.
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
文摘With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations.