The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sa...The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sample of four buildings with reported analysis of comparison between IBC and UBC is taken for confirming the comparison. Eight sample places from SBC map for Saudi Arabia together with two sample places of high seismic activity in USA were taken for the comparisons. The study used software package ETABS in this study for modeling and analysis. The results are dissimilar from the comparisons reported for test places of USA. It is concluded that at most places SBC base shear is higher for both ELFP and MRSA. However, the results cannot be generalized and considered always right. The same is factual for overturning moments. Consequently, we cannot report that SBC is more conservative than UBC for all scenarios.展开更多
A versatile approach is employed to generate artificial accelerograms which satisfy the compatibility criteria prescribed by the Chinese aseismic code provisions GB 50011-2001. In particular, a frequency dependent pea...A versatile approach is employed to generate artificial accelerograms which satisfy the compatibility criteria prescribed by the Chinese aseismic code provisions GB 50011-2001. In particular, a frequency dependent peak factor derived by means of appropriate Monte Carlo analyses is introduced to relate the GB 50011-2001 design spectrum to a parametrically defined evolutionary power spectrum (EPS). Special attention is given to the definition of the frequency content of the EPS in order to accommodate the mathematical form of the aforementioned design spectrum. Further, a one-to-one relationship is established between the parameter controlling the time-varying intensity of the EPS and the effective strong ground motion duration. Subsequently, an efficient auto-regressive moving-average (ARMA) filtering technique is utilized to generate ensembles of non-stationary artificial accelerograms whose average response spectrum is in a close agreement with the considered design spectrum. Furthermore, a harmonic wavelet based iterative scheme is adopted to modify these artificial signals so that a close matching of the signals' response spectra with the GB 50011-2001 design spectrum is achieved on an individual basis. This is also done for field recorded accelerograms pertaining to the May, 2008 Wenchuan seismic event. In the process, zero-phase high-pass filtering is performed to accomplish proper baseline correction of the acquired spectrum compatible artificial and field accelerograms. Numerical results are given in a tabulated format to expedite their use in practice.展开更多
文摘The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sample of four buildings with reported analysis of comparison between IBC and UBC is taken for confirming the comparison. Eight sample places from SBC map for Saudi Arabia together with two sample places of high seismic activity in USA were taken for the comparisons. The study used software package ETABS in this study for modeling and analysis. The results are dissimilar from the comparisons reported for test places of USA. It is concluded that at most places SBC base shear is higher for both ELFP and MRSA. However, the results cannot be generalized and considered always right. The same is factual for overturning moments. Consequently, we cannot report that SBC is more conservative than UBC for all scenarios.
文摘A versatile approach is employed to generate artificial accelerograms which satisfy the compatibility criteria prescribed by the Chinese aseismic code provisions GB 50011-2001. In particular, a frequency dependent peak factor derived by means of appropriate Monte Carlo analyses is introduced to relate the GB 50011-2001 design spectrum to a parametrically defined evolutionary power spectrum (EPS). Special attention is given to the definition of the frequency content of the EPS in order to accommodate the mathematical form of the aforementioned design spectrum. Further, a one-to-one relationship is established between the parameter controlling the time-varying intensity of the EPS and the effective strong ground motion duration. Subsequently, an efficient auto-regressive moving-average (ARMA) filtering technique is utilized to generate ensembles of non-stationary artificial accelerograms whose average response spectrum is in a close agreement with the considered design spectrum. Furthermore, a harmonic wavelet based iterative scheme is adopted to modify these artificial signals so that a close matching of the signals' response spectra with the GB 50011-2001 design spectrum is achieved on an individual basis. This is also done for field recorded accelerograms pertaining to the May, 2008 Wenchuan seismic event. In the process, zero-phase high-pass filtering is performed to accomplish proper baseline correction of the acquired spectrum compatible artificial and field accelerograms. Numerical results are given in a tabulated format to expedite their use in practice.