Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interferenc...Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplink and the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed. Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysis and simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2 k speech service is given.展开更多
An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A ...An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against link gain changes, and outperforms the reference algorithms.展开更多
Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very sca...Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.展开更多
A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of ...A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.展开更多
A multiple watermarking algorithm is presented according to the multiple accessing technique of the code division multiple access (CDMA) system. Multiple watermarks are embedded into digital images in the wavelet tr...A multiple watermarking algorithm is presented according to the multiple accessing technique of the code division multiple access (CDMA) system. Multiple watermarks are embedded into digital images in the wavelet transform domain. Each of the watermarks is embedded and extracted independently without impacts to each other. Multiple watermarks are convolution encoded and block interleaved, and the orthogonal Gold sequences are used to spread spectrum of the copyright messages. CDMA encoded water-mark messages are embedded into the wavelet sub-bands excluding the wavelet HH1 sub-bands. The embedment amplitude is decided by Watson' s perceptual model of wavelet transform domain, and the embedmeut position in the selected wavelet sub-bands is decided randomly by a pseudo-random noise (PN) sequence. As a blind watermm'king algorithm, watermarks are extracted without original image. The watermarking capacity of proposed algorithm is also discussed. When two watermarks are embedded in an image at the same time, the capacity is larger than the capacity when a single watermark is embedded, and is smaller than the sum of the capacity of two separately embedded watermarks. Experimental results show that the proposed algorithm improves the detection bits error rate (BER) observably, and the multiple watermarks have a preferable robustness and invisibility.展开更多
This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can imp...This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can improve the PAPR property of the MC-CDMA signals, but this technique requires an exhaustive search over the combinations of spreading code sets. It is observed that when the number of active users increases, the search complexity will increase exponentially. Based on this fact, we propose a low complexity VCS (LC-VCS) method to reduce the computational complexity. The basic idea of LC-VCS is to derive new signals using the relationship between candidature signals. Simulation results show that the proposed approach can reduce PAPR with lower comtational pucomplexity. In addition, it can be blindly received without any side information.展开更多
In this paper the impact factors on the optical fiber LAN network with ring topology are considered. The couple ratio, the self-ring effect, the Multiple-Access Interference (MAI), and the channel noises are the main ...In this paper the impact factors on the optical fiber LAN network with ring topology are considered. The couple ratio, the self-ring effect, the Multiple-Access Interference (MAI), and the channel noises are the main factors degrading the system performance. We develop a systematic method that employs the smallest p multiplication method to analyze the optimization of the ring network. The results show that choosing an optimal couple ratio and power control will enhance the system performance dramatically. In addition, the “self-ring” interference and MAI can be suppressed by power control to some extent.展开更多
A new performance analysis method of Optical Code Division Multiple Access ( OCDMA ) systems with an optical hard limiter is studied. The bit error probability of the OCDMA system is derived, and the numerical ...A new performance analysis method of Optical Code Division Multiple Access ( OCDMA ) systems with an optical hard limiter is studied. The bit error probability of the OCDMA system is derived, and the numerical results of the system with and without an ideal optical hard limiter are analyzed respectively. The results show that although the derived expression is different from the one derived by J A Salehi , the numerical results are the same as those analyzed by J A Salehi, and the numerical result can be easily achieved in this expression.展开更多
Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such a...Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments.展开更多
A novel method for improving the capacity of multi-code multimedia Code Division Mul- tiple Access (CDMA) systems is proposed. By factitiously improving the transmission bit rate of the call, the number of the orthogo...A novel method for improving the capacity of multi-code multimedia Code Division Mul- tiple Access (CDMA) systems is proposed. By factitiously improving the transmission bit rate of the call, the number of the orthogonal codes used by a user is increased which leads to the decreasing of the interference. Simulation results shows that the proposed scheme results in better throughput than traditional multi-code CDMA systems.展开更多
A way of resolving spreading code mismatches in blind multiuser detection with a particle swarm optimization (PSO) approach is proposed. It has been shown that the PSO algorithm incorporating the linear system of th...A way of resolving spreading code mismatches in blind multiuser detection with a particle swarm optimization (PSO) approach is proposed. It has been shown that the PSO algorithm incorporating the linear system of the decorrelating detector, which is termed as decorrelating PSO (DPSO), can significantly improve the bit error rate (BER) and the system capacity. As the code mismatch occurs, the output BER performance is vulnerable to degradation for DPSO. With a blind decorrelating scheme, the proposed blind DPSO (BDPSO) offers more robust capabilities over existing DPSO under code mismatch scenarios.展开更多
This paper proposes a closed-form joint space-time channel and Direction Of Arrival (DOA) blind estimation algorithm for space-thne coded Multi-Carrier Code Division Multiple Access (MC-CDMA) systems equipped with...This paper proposes a closed-form joint space-time channel and Direction Of Arrival (DOA) blind estimation algorithm for space-thne coded Multi-Carrier Code Division Multiple Access (MC-CDMA) systems equipped with a Uniform Linear Array (ULA) at the base station in frequency-selective fading environments. The algorithm uses an ESPRIT-like method to separate multiple co-channel users with different impinging DOAs. As a result, the DOAs for multiple users are obtained. In particular, a set of signal subspaces, every one of which is spanned by the space-time vector channels of an individual user, are also obtained. From these signal subspaces, the space-time channels of multiple users are estimated using the subspace method. Computer simulations illustrate both the validity and the overall performance of the proposed scheme.展开更多
The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail...The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail. The mathematical mode including signal transmission, summing, receiving and recovering are established respectively. One of the main sources of Bit Error Rate (BER) of OCDMA system based on FBGs is the unevenness of signal power spectrum, which leads to the chip powers unequal with each other. The Signal to Interfere Ratio (SIR) and BER performance of the system are studied and simulated at the case with uneven distribution of chips' powers.展开更多
The joint channel and power allocation in the downlink transmission of multi-user multi-carrier code division multiple access(MC-CDMA) systems are investigated and the throughput maximization problem is considered a...The joint channel and power allocation in the downlink transmission of multi-user multi-carrier code division multiple access(MC-CDMA) systems are investigated and the throughput maximization problem is considered as a mixed integer optimization problem. For simplicity of analysis, the problem is divided into two less complex sub-problems: power allocation and channel allocation, which can be solved by a suboptimal adaptive power allocation (APA)algorithm and an optimal adaptive channel allocation (ACA) algorithm, respectively. By combining APA and ACA algorithms, an adaptive channel and power allocation scheme is proposed. The numerical results show that the proposed APA algorithm is more suitable for MC-CDMA systems than the conventional equal power allocation algorithm, and that the proposed channel and power allocation scheme can significantly improve the system throughout performance.展开更多
Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed...Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed and compared with those of the multi-antenna receive diversity techniques. Theoretical analysis shows that the multi-antenna transmit diversity techniques provide considerable performance gain at the mobile receiver in the wireless channel with less inherent multipath diversity, especially the G4 coding based scheme. Compared with the multi-antenna receive diversity techniques with the same diversity order, the transmit diversity techniques introduce much more multi-access plus multipath interference and require measures of interference suppression in the multi-user environments.展开更多
On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized comple...On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized complex wavelet packet as multi-carrier modulation, a novel space-time block coded the MC-CDMA system based on complex wavelet packet and turbo coding is proposed, and the system bit error rate (BER) performance in the Rayleigh fading channel is investigated. The system can make full use of space-time block codes' transmit diversity and turbo codes' good ability against fading channel to improve the BER performance significantly, and it can also avoid the decrease of spectrum efficiency of conventional MC-CDMA due to inserting cyclic prefix (CP) by utilizing superior characteristics of the optimized complex wavelet packet. Simulation results show that the proposed space-time block coded MC-CDMA system based on the complex wavelet packet performs better than the conventional space-time block coded MC-CDMA (STBC-MC-CDMA) system, and slightly outperforms the STBC-MC-CDMA with CP. Moreover, the application of the space-time block coding technique concatenated with turbo codes strengthens the system ability to combat various interferences in fading channel further.展开更多
A hybrid wavelength division multiple access (WDMA)/optical code division multiplexing (OCDM) system is proposed, where the optical code is not the same as the address of every optical network unit (ONU); rather...A hybrid wavelength division multiple access (WDMA)/optical code division multiplexing (OCDM) system is proposed, where the optical code is not the same as the address of every optical network unit (ONU); rather, the code is a virtual fiber of hybrid passive optical network (PON). To our knowledge, this is the first report analyzing a single encoder/decoder with a single corresponding optical code being exploited to encode/decode multiple wavelength signals simultaneously. This system enables OCDM to become transparent to ONU so that the existing wavelength division multiplexing (WDM) PON can be upgraded. Thus, redesigning the optical line terminal and ONU can be easily accomplished, and greatly decreasing the number of encoder/decoder becomes possible. In experiment, we only employ two encoder/decoder pairs to combine two WDM-PONs in one fiber. Simulation results confirm the feasibility of the proposed system.展开更多
A novel method is proposed to analyze the capacity of future Code Division Multiple Access (CDMA) systems carrying multimedia services. The power level allocation is firstly investigated to meet each call's Bit Err...A novel method is proposed to analyze the capacity of future Code Division Multiple Access (CDMA) systems carrying multimedia services. The power level allocation is firstly investigated to meet each call's Bit Error Rate (BER) requirement, then the system capacity is defined from the conditions lbr the existence of the physical meaning of these power levels. Simulation results have shown that the capacity analyzing methods can be well used in the performance evaluation of the system accommodating heterogeneous services and the spectral efficiency of this scheme is higher than the existing ones.展开更多
To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, ...To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.展开更多
As the radio spectrum is a very scarce resource,the Call Admission Control (CAC) is one of the most important parts in radio resource management. The Code Division Multiple Access (CDMA) based next generation wireless...As the radio spectrum is a very scarce resource,the Call Admission Control (CAC) is one of the most important parts in radio resource management. The Code Division Multiple Access (CDMA) based next generation wireless communications systems will support the transmission of multimedia traffic,such as voice,video and data,thus the CAC,which can support the multimedia traffic and guarantee the Quality of Service (QoS) of different traffic,has gained broad attention. In this paper,a novel multimedia traffic modeling method and a corresponding dynamic QoS based CAC are proposed. The analysis and simulation results show that the proposed CAC scheme can guarantee the QoS to different traffic demand,and improve the system performance significantly.展开更多
文摘Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplink and the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed. Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysis and simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2 k speech service is given.
基金Project supported by the National Science Foundation for Creative Research Groups (Grant No.60521002), and the National Key Technologies R&D Program (Grant No.2005BA908B02)
文摘An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against link gain changes, and outperforms the reference algorithms.
文摘Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.61475099 and 61102053)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF201405)+1 种基金the Open Fund of IPOC(BUPT)(Grant No.IPOC2015B004)the Program of State Key Laboratory of Information Security(Grant No.2016-MS-05)
文摘A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.
基金the National High Technology Research and Development Programme of China(No 2006AA01Z407,No.2007AA01Z478)the Postdoctoral Science Foundation of China(No.20070420707)
文摘A multiple watermarking algorithm is presented according to the multiple accessing technique of the code division multiple access (CDMA) system. Multiple watermarks are embedded into digital images in the wavelet transform domain. Each of the watermarks is embedded and extracted independently without impacts to each other. Multiple watermarks are convolution encoded and block interleaved, and the orthogonal Gold sequences are used to spread spectrum of the copyright messages. CDMA encoded water-mark messages are embedded into the wavelet sub-bands excluding the wavelet HH1 sub-bands. The embedment amplitude is decided by Watson' s perceptual model of wavelet transform domain, and the embedmeut position in the selected wavelet sub-bands is decided randomly by a pseudo-random noise (PN) sequence. As a blind watermm'king algorithm, watermarks are extracted without original image. The watermarking capacity of proposed algorithm is also discussed. When two watermarks are embedded in an image at the same time, the capacity is larger than the capacity when a single watermark is embedded, and is smaller than the sum of the capacity of two separately embedded watermarks. Experimental results show that the proposed algorithm improves the detection bits error rate (BER) observably, and the multiple watermarks have a preferable robustness and invisibility.
文摘This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can improve the PAPR property of the MC-CDMA signals, but this technique requires an exhaustive search over the combinations of spreading code sets. It is observed that when the number of active users increases, the search complexity will increase exponentially. Based on this fact, we propose a low complexity VCS (LC-VCS) method to reduce the computational complexity. The basic idea of LC-VCS is to derive new signals using the relationship between candidature signals. Simulation results show that the proposed approach can reduce PAPR with lower comtational pucomplexity. In addition, it can be blindly received without any side information.
文摘In this paper the impact factors on the optical fiber LAN network with ring topology are considered. The couple ratio, the self-ring effect, the Multiple-Access Interference (MAI), and the channel noises are the main factors degrading the system performance. We develop a systematic method that employs the smallest p multiplication method to analyze the optimization of the ring network. The results show that choosing an optimal couple ratio and power control will enhance the system performance dramatically. In addition, the “self-ring” interference and MAI can be suppressed by power control to some extent.
文摘A new performance analysis method of Optical Code Division Multiple Access ( OCDMA ) systems with an optical hard limiter is studied. The bit error probability of the OCDMA system is derived, and the numerical results of the system with and without an ideal optical hard limiter are analyzed respectively. The results show that although the derived expression is different from the one derived by J A Salehi , the numerical results are the same as those analyzed by J A Salehi, and the numerical result can be easily achieved in this expression.
文摘Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments.
基金the Natural Science Fund for Jiangsu Province Universities (No.06kJB510078 and No.06KJA51001) by the Research Open Fund of the National Mobile Communications Key Lab (No.N200507).
文摘A novel method for improving the capacity of multi-code multimedia Code Division Mul- tiple Access (CDMA) systems is proposed. By factitiously improving the transmission bit rate of the call, the number of the orthogonal codes used by a user is increased which leads to the decreasing of the interference. Simulation results shows that the proposed scheme results in better throughput than traditional multi-code CDMA systems.
基金supported by the NSC under Grant No.NSC 101-2221-E-275-007
文摘A way of resolving spreading code mismatches in blind multiuser detection with a particle swarm optimization (PSO) approach is proposed. It has been shown that the PSO algorithm incorporating the linear system of the decorrelating detector, which is termed as decorrelating PSO (DPSO), can significantly improve the bit error rate (BER) and the system capacity. As the code mismatch occurs, the output BER performance is vulnerable to degradation for DPSO. With a blind decorrelating scheme, the proposed blind DPSO (BDPSO) offers more robust capabilities over existing DPSO under code mismatch scenarios.
基金Partially supported by the National Natural Science Foundation of China (No.60272071)the Research Fund for Doctoral Program of Higher Education of China (No.20020698024 & 20030698027).
文摘This paper proposes a closed-form joint space-time channel and Direction Of Arrival (DOA) blind estimation algorithm for space-thne coded Multi-Carrier Code Division Multiple Access (MC-CDMA) systems equipped with a Uniform Linear Array (ULA) at the base station in frequency-selective fading environments. The algorithm uses an ESPRIT-like method to separate multiple co-channel users with different impinging DOAs. As a result, the DOAs for multiple users are obtained. In particular, a set of signal subspaces, every one of which is spanned by the space-time vector channels of an individual user, are also obtained. From these signal subspaces, the space-time channels of multiple users are estimated using the subspace method. Computer simulations illustrate both the validity and the overall performance of the proposed scheme.
基金Supported by the Natural Science Research Foundation of Jiangsu Higher-Learning Insti-tution (No.04jkb510057).
文摘The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail. The mathematical mode including signal transmission, summing, receiving and recovering are established respectively. One of the main sources of Bit Error Rate (BER) of OCDMA system based on FBGs is the unevenness of signal power spectrum, which leads to the chip powers unequal with each other. The Signal to Interfere Ratio (SIR) and BER performance of the system are studied and simulated at the case with uneven distribution of chips' powers.
基金Major Project of the National Natural Science Founda-tion of China(No.60496311)the National High Technology Research and Development Program of China(863Program)(No.2007AA01Z207)the Program for New Century Excellent Talents in University
文摘The joint channel and power allocation in the downlink transmission of multi-user multi-carrier code division multiple access(MC-CDMA) systems are investigated and the throughput maximization problem is considered as a mixed integer optimization problem. For simplicity of analysis, the problem is divided into two less complex sub-problems: power allocation and channel allocation, which can be solved by a suboptimal adaptive power allocation (APA)algorithm and an optimal adaptive channel allocation (ACA) algorithm, respectively. By combining APA and ACA algorithms, an adaptive channel and power allocation scheme is proposed. The numerical results show that the proposed APA algorithm is more suitable for MC-CDMA systems than the conventional equal power allocation algorithm, and that the proposed channel and power allocation scheme can significantly improve the system throughout performance.
基金TheNationalNaturalScienceFoundationofChina (No .60 3 90 5 40 ) .
文摘Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed and compared with those of the multi-antenna receive diversity techniques. Theoretical analysis shows that the multi-antenna transmit diversity techniques provide considerable performance gain at the mobile receiver in the wireless channel with less inherent multipath diversity, especially the G4 coding based scheme. Compared with the multi-antenna receive diversity techniques with the same diversity order, the transmit diversity techniques introduce much more multi-access plus multipath interference and require measures of interference suppression in the multi-user environments.
文摘On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized complex wavelet packet as multi-carrier modulation, a novel space-time block coded the MC-CDMA system based on complex wavelet packet and turbo coding is proposed, and the system bit error rate (BER) performance in the Rayleigh fading channel is investigated. The system can make full use of space-time block codes' transmit diversity and turbo codes' good ability against fading channel to improve the BER performance significantly, and it can also avoid the decrease of spectrum efficiency of conventional MC-CDMA due to inserting cyclic prefix (CP) by utilizing superior characteristics of the optimized complex wavelet packet. Simulation results show that the proposed space-time block coded MC-CDMA system based on the complex wavelet packet performs better than the conventional space-time block coded MC-CDMA (STBC-MC-CDMA) system, and slightly outperforms the STBC-MC-CDMA with CP. Moreover, the application of the space-time block coding technique concatenated with turbo codes strengthens the system ability to combat various interferences in fading channel further.
基金supported by the National Natural Science Fundation of China(Nos.60972032 and 60632010)the National"863"Project of China(Nos. 2006AA01Z251 and 2007AA01Z271)
文摘A hybrid wavelength division multiple access (WDMA)/optical code division multiplexing (OCDM) system is proposed, where the optical code is not the same as the address of every optical network unit (ONU); rather, the code is a virtual fiber of hybrid passive optical network (PON). To our knowledge, this is the first report analyzing a single encoder/decoder with a single corresponding optical code being exploited to encode/decode multiple wavelength signals simultaneously. This system enables OCDM to become transparent to ONU so that the existing wavelength division multiplexing (WDM) PON can be upgraded. Thus, redesigning the optical line terminal and ONU can be easily accomplished, and greatly decreasing the number of encoder/decoder becomes possible. In experiment, we only employ two encoder/decoder pairs to combine two WDM-PONs in one fiber. Simulation results confirm the feasibility of the proposed system.
基金Supported by the open research fund of the National Mobile Communications Key Lab of the Southeast Uni-versity and by the Hong Kong Research Council.
文摘A novel method is proposed to analyze the capacity of future Code Division Multiple Access (CDMA) systems carrying multimedia services. The power level allocation is firstly investigated to meet each call's Bit Error Rate (BER) requirement, then the system capacity is defined from the conditions lbr the existence of the physical meaning of these power levels. Simulation results have shown that the capacity analyzing methods can be well used in the performance evaluation of the system accommodating heterogeneous services and the spectral efficiency of this scheme is higher than the existing ones.
文摘To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.
基金Supported in part by the SWJTU Funding under Grant 2003B006.
文摘As the radio spectrum is a very scarce resource,the Call Admission Control (CAC) is one of the most important parts in radio resource management. The Code Division Multiple Access (CDMA) based next generation wireless communications systems will support the transmission of multimedia traffic,such as voice,video and data,thus the CAC,which can support the multimedia traffic and guarantee the Quality of Service (QoS) of different traffic,has gained broad attention. In this paper,a novel multimedia traffic modeling method and a corresponding dynamic QoS based CAC are proposed. The analysis and simulation results show that the proposed CAC scheme can guarantee the QoS to different traffic demand,and improve the system performance significantly.