This paper presented an approach to hide secret speech information in code excited linear prediction (CELP)-based speech coding scheme by adopting the analysis-by-synthesis (ABS)-based algorithm of speech information ...This paper presented an approach to hide secret speech information in code excited linear prediction (CELP)-based speech coding scheme by adopting the analysis-by-synthesis (ABS)-based algorithm of speech information hiding and extracting for the purpose of secure speech communication. The secret speech is coded in 2.4 Kb/s mixed excitation linear prediction (MELP), which is embedded in CELP type public speech. The ABS algorithm adopts speech synthesizer in speech coder. Speech embedding and coding are synchronous, i.e. a fusion of speech information data of public and secret. The experiment of embedding 2.4 Kb/s MELP secret speech in G.728 scheme coded public speech transmitted via public switched telephone network (PSTN) shows that the proposed approach satisfies the requirements of information hiding, meets the secure communication speech quality constraints, and achieves high hiding capacity of average 3.2 Kb/s with an excellent speech quality and complicating speakers’ recognition.展开更多
基金Supported by the Science and Technology Project of Beijing Municipal Education Commission (KM200310005024)Xinxing Project of Beijing Municipal Science and Technology Commission (953811300).
文摘This paper presented an approach to hide secret speech information in code excited linear prediction (CELP)-based speech coding scheme by adopting the analysis-by-synthesis (ABS)-based algorithm of speech information hiding and extracting for the purpose of secure speech communication. The secret speech is coded in 2.4 Kb/s mixed excitation linear prediction (MELP), which is embedded in CELP type public speech. The ABS algorithm adopts speech synthesizer in speech coder. Speech embedding and coding are synchronous, i.e. a fusion of speech information data of public and secret. The experiment of embedding 2.4 Kb/s MELP secret speech in G.728 scheme coded public speech transmitted via public switched telephone network (PSTN) shows that the proposed approach satisfies the requirements of information hiding, meets the secure communication speech quality constraints, and achieves high hiding capacity of average 3.2 Kb/s with an excellent speech quality and complicating speakers’ recognition.