期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Therapeutic applications of genetic code expansion 被引量:4
1
作者 Yujia Huang Tao Liu 《Synthetic and Systems Biotechnology》 SCIE 2018年第3期150-158,共9页
In nature,a limited,conservative set of amino acids are utilized to synthesize proteins.Genetic code expansion technique reassigns codons and incorporates noncanonical amino acids(ncAAs)through orthogonal aminoacyltRN... In nature,a limited,conservative set of amino acids are utilized to synthesize proteins.Genetic code expansion technique reassigns codons and incorporates noncanonical amino acids(ncAAs)through orthogonal aminoacyltRNA synthetase(aaRS)/tRNA pairs.The past decade has witnessed the rapid growth in diversity and scope for therapeutic applications of this technology.Here,we provided an update on the recent progress using genetic code expansion in the following areas:antibody-drug conjugates(ADCs),bispecific antibodies(BsAb),immunotherapies,long-lasting protein therapeutics,biosynthesized peptides,engineered viruses and cells,as well as other therapeutic related applications,where the technique was used to elucidate the mechanisms of biotherapeutics and drug targets. 展开更多
关键词 Genetic code expansion Noncanonical amino acids BIOTHERAPEUTICS Antibody-drug conjugates Live-attenuated vaccines
原文传递
Light-controlled phosphorylation in the TrkA-Y785 site by photosensitive UAAs activates the MAPK/ERK signaling pathway
2
作者 SHU ZHAO SHIXIN YE 《BIOCELL》 SCIE 2023年第6期1377-1388,共12页
Background:This paper aims to establish a light-controlled phosphorylation detection method at the Y785 site of tropomyosin receptor kinase A(TrkA)receptor in mammalian cells by using genetic code expansion technology... Background:This paper aims to establish a light-controlled phosphorylation detection method at the Y785 site of tropomyosin receptor kinase A(TrkA)receptor in mammalian cells by using genetic code expansion technology and detecting the effects of optical activation of this site on the downstream MAPK/ERK pathway.The study is based on the current situation that the regulatory mechanism of TrkA phosphorylation has not been fully elucidated.Methods:Two photosensitive unnatural amino acids,p-azido-L-phenylalanine(AzF)and photo-caged tyrosine(ONB)were introduced into the TrkA-Y785 site by genetic code expansion technology and site-directed mutagenesis.Western blotting and laser confocal imaging were conducted to analyze the effects of this site on activating the MAPK/ERK pathway and nerve cell differentiation before and after photostimulation.Results:Our results supplemented the light-controlled results of the TrkA-Y785 site based on our previous research and verified that Y785 also makes important contributions in regulating the MAPK/ERK pathway.Conclusion:This study demonstrated the significant contributions of the TrkAY785 site in regulating the ERK pathway by precisely controlling the phosphorylation state of a single tyrosine site. 展开更多
关键词 Tropomyosin receptor kinase A Genetic code expansion Y785 P-azido-L-phenylalanine Photo-caged tyrosine
下载PDF
Site-specific protein modification by genetic encoded disulfide compatible thiols
3
作者 Xinyu Ling Heqi Chen +3 位作者 Wei Zheng Liying Chang Yong Wang Tao Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第1期163-166,共4页
Cysteine chemistry provides a low cost and convenient way for site-specific protein modification.However,recombinant expression of disulfide bonding containing protein with unpaired cysteine is technically challenging... Cysteine chemistry provides a low cost and convenient way for site-specific protein modification.However,recombinant expression of disulfide bonding containing protein with unpaired cysteine is technically challenging and the resulting protein often suffers from significantly reduced yield and activity.Here we used genetic code expansion technique to introduce a surface exposed self-paired dithiol functional group into proteins,which can be selectively reduced to afford active thiols.Two compounds containing self-paired disulfides were synthesized,and their genetic incorporations were validated using green fluorescent proteins(GFP).The compatibility of these self-paired di-thiols with natural disulfide bond was demonstrated using antibody fragment to afford site-specifically labeled antibody.This work provides another valuable building block into the chemical tool-box for site-specific labeling of proteins containing internal disulfides. 展开更多
关键词 Cysteine chemistry Genetic code expansion Protein modification Biorthogonal chemistry Disulfide bond
原文传递
Genetic Encoding of a Photocaged Glutamate for Optical Control of Protein Functions
4
作者 Xinyu Ling Yi Zuo +4 位作者 Heqi Chen Dezhong Ji Jingjing Wang Liying Chang Tao Liu 《CCS Chemistry》 CSCD 2023年第6期1301-1307,共7页
Genetic encoding of photocaged noncanonical amino acids provides a powerful tool to study protein functions through optical control but is not yet available for acidic amino acids.Herein,we report the first site-speci... Genetic encoding of photocaged noncanonical amino acids provides a powerful tool to study protein functions through optical control but is not yet available for acidic amino acids.Herein,we report the first site-specific genetic encoding of a photocaged glutamate,4-methoxy-7-nitroindolinyl caged glutamate(MNI-Glu),into recombinant proteins via an expanded genetic code through evolved EcLeuRS/tRNA pair.Using two enzymes as examples,we demonstrate that substituting the conserved-active-site glutamate of a secreted alkaline phosphatase and a protease HRV3C to MNI-Glu allows photoregulatory control of their enzymatic activities.Our approach is an important addition to the photocaged noncanonical amino-acid toolbox and provides a general method to photocontrol protein activity based on caging a critical glutamate. 展开更多
关键词 noncanonical amino acid genetic code expansion MNI-Glu photocaged glutamate optical control
原文传递
Simplified methodology for a modular and genetically expanded protein synthesis in cell-free systems
5
作者 Yonatan Chemla Eden Ozer +3 位作者 Michael Shaferman Ben Zaad Rambabu Dandela Lital Alfonta 《Synthetic and Systems Biotechnology》 SCIE 2019年第4期189-196,共8页
Genetic code expansion,which enables the site-specific incorporation of unnatural amino acids into proteins,has emerged as a new and powerful tool for protein engineering.Currently,it is mainly utilized inside living ... Genetic code expansion,which enables the site-specific incorporation of unnatural amino acids into proteins,has emerged as a new and powerful tool for protein engineering.Currently,it is mainly utilized inside living cells for a myriad of applications.However,the utilization of this technology in a cell-free,reconstituted platform has several advantages over living systems.The typical limitations to the employment of these systems are the laborious and complex nature of its preparation and utilization.Herein,we describe a simplified method for the preparation of this system from Escherichia coli cells,which is specifically adapted for the expression of the components needed for cell-free genetic code expansion.Besides,we propose and demonstrate a modular approach to its utilization.By this approach,it is possible to prepare and store different extracts,harboring various translational components,and mix and match them as needed for more than four years retaining its high efficiency.We demonstrate this with the simultaneous incorporation of two different unnatural amino acids into a reporter protein.Finally,we demonstrate the advantage of cell-free systems over living cells for the incorporation ofδ-thio-boc-lysine into ubiquitin by using the methanosarcina mazei wild-type pyrrolysyl tRNACUA and tRNA-synthetase pair,which could not be achieved in a living cell. 展开更多
关键词 Cell free system Genetic code expansion Thio-lysine Simplified extract preparation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部