We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be ...We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be decomposed into at least two nontrivial codes as the same for the languages. In the paper, a linear time algorithm is designed, which finds the prime decomposition. If codes or finite languages are presented as given by its minimal deterministic automaton, then from the point of view of abstract algebra and graph theory, this automaton has special properties. The study was conducted using system for computational Discrete Algebra GAP. .展开更多
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ...For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.展开更多
After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algo...After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced.展开更多
A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L ...A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L were defined, which was the basis of self-dual codes defined on graphs and played a key role in the paper. The second were that a self-dual code could be defined on factor graph, which was much different from conventional algebraic method. The third was that a factor graph approach to judge a self-dual code was illustrated, which took advantage of duality properties of factor graphs and our proposed transform T_ R→L to offer a convenient and geometrically intuitive process to judge a self-dual code.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDP...In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
An L(0,1)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G such that the difference between the labels assigned to any two adjacent vertices is at least zero and the difference betw...An L(0,1)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G such that the difference between the labels assigned to any two adjacent vertices is at least zero and the difference between the labels assigned to any two vertices which are at distance two is at least one. The span of an L(0,1)-labelling is the maximum label number assigned to any vertex of G. The L(0,1)-labelling number of a graph G, denoted by λ0.1(G) is the least integer k such that G has an L(0,1)-labelling of span k. This labelling has an application to a computer code assignment problem. The task is to assign integer control codes to a network of computer stations with distance restrictions. A cactus graph is a connected graph in which every block is either an edge or a cycle. In this paper, we label the vertices of a cactus graph by L(0,1)-labelling and have shown that, △-1≤λ0.1(G)≤△ for a cactus graph, where △ is the degree of the graph G.展开更多
In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destinatio...In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destination which is in accordance with the corresponding joint Tanner graph characterizing two different component LDPC codes used by the source and relay in ideal and non-ideal relay cooperations. The theoretical analysis and simulations show that the coded cooperation scheme obviously outperforms the coded non-cooperation one under the same code rate and decoding complex. The significant performance improvement can be virtually credited to the additional mutual exchange of the extrinsic information resulted by the LDPC code employed by the source and its counterpart used by the relay in both ideal and non-ideal cooperations.展开更多
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of length...The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fpwho has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner(5,7) QC LDPC codes.展开更多
Let G =( V,E) be a connected graph and W = { w_1,w_2,…,w_k} be an ordered subset of V( G).For any vertex v ∈V,the locating code of v with respect to W is the k-vector CW( v) = { d( v,w_1),d( v,w_2),…,d( v,w_k) },W ...Let G =( V,E) be a connected graph and W = { w_1,w_2,…,w_k} be an ordered subset of V( G).For any vertex v ∈V,the locating code of v with respect to W is the k-vector CW( v) = { d( v,w_1),d( v,w_2),…,d( v,w_k) },W is said to be a locating set of G if distinct vertices have the distinct locating code,and the locating number of G is defined as: Loc( G) = min{ | W| : W is a locating set of G}.We study the locating set and locating number of a graph G,obtain some bounds for the locating numbers of graphs,and determine the exact value of Loc( G) for some special classes of graphs,such as cycles,wheels,complete t-partite graph and some Cartesian products of paths and cycles. In addition,we also prove that Loc( T) ≥Δ-1 holds for all trees T with maximum degree Δ,and shows a tree T with Loc( T) = Δ-1.展开更多
Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In ...Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In this paper, this problem is formulated as a heuristic depth-first graph search problem at first. The graph node expanding method and rules are given. Then, rollout strategies are applied, which can be combined with the heuristic graph search algorithms, in a computationally more efficient manner than the optimal strategies, to obtain solutions superior to those using the greedy heuristic algorithms. The proposed rollout-based test points selection algorithm is illustrated and tested using an analog circuit and a set of simulated integer-coded fault wise tables. Computa- tional results are shown, which suggest that the rollout strategy policies are significantly better than other strategies.展开更多
A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with mul...A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with multiple sources simultaneously via network-coding.It avoids the issues of imperfect frequency/timing synchronization and large transmission delay which may be introduced by frequency-division multiple access(FDMA)/code-division multiple access(CDMA)and time-division multiple access(TDMA)manners.The proposed joint″Min-Sum″iterative decoding is effectively carried out in the destination.Such a decoding algorithm agrees with the introduced equivalent joint Tanner graph which can be used to fully characterize LDPC codes employed by the sources and relay.Theoretical analysis and numerical simulation show that the proposed scheme with joint iterative decoding can achieve significant cooperation diversity gain.Furthermore,for the relay,compared with the cascade scheme,the proposed scheme has much lower complexity of LDPC-encoding and is easier to be implemented in the hardware with similar bit error rate(BER)performance.展开更多
文摘We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be decomposed into at least two nontrivial codes as the same for the languages. In the paper, a linear time algorithm is designed, which finds the prime decomposition. If codes or finite languages are presented as given by its minimal deterministic automaton, then from the point of view of abstract algebra and graph theory, this automaton has special properties. The study was conducted using system for computational Discrete Algebra GAP. .
基金Project supported by the National Natural Science Foundation of China(Grant No.60972046)Grant from the National Defense Pre-Research Foundation of China
文摘For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.
文摘After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced.
基金The National Natural Science Foundation of China (No60472018)
文摘A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L were defined, which was the basis of self-dual codes defined on graphs and played a key role in the paper. The second were that a self-dual code could be defined on factor graph, which was much different from conventional algebraic method. The third was that a factor graph approach to judge a self-dual code was illustrated, which took advantage of duality properties of factor graphs and our proposed transform T_ R→L to offer a convenient and geometrically intuitive process to judge a self-dual code.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金supported in part by National Natural Science Foundation of China under Grants 61372074,91438101,61103143,U1504601,and U1404622Key Scientific and Technological Project of Henan under Grants 162102310589 and 172102310124
文摘In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
文摘An L(0,1)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G such that the difference between the labels assigned to any two adjacent vertices is at least zero and the difference between the labels assigned to any two vertices which are at distance two is at least one. The span of an L(0,1)-labelling is the maximum label number assigned to any vertex of G. The L(0,1)-labelling number of a graph G, denoted by λ0.1(G) is the least integer k such that G has an L(0,1)-labelling of span k. This labelling has an application to a computer code assignment problem. The task is to assign integer control codes to a network of computer stations with distance restrictions. A cactus graph is a connected graph in which every block is either an edge or a cycle. In this paper, we label the vertices of a cactus graph by L(0,1)-labelling and have shown that, △-1≤λ0.1(G)≤△ for a cactus graph, where △ is the degree of the graph G.
基金Supported by the Open Research Fund of National Moblie Communications Research Laboratory of Southeast Uni-versity (No. W200704)
文摘In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destination which is in accordance with the corresponding joint Tanner graph characterizing two different component LDPC codes used by the source and relay in ideal and non-ideal relay cooperations. The theoretical analysis and simulations show that the coded cooperation scheme obviously outperforms the coded non-cooperation one under the same code rate and decoding complex. The significant performance improvement can be virtually credited to the additional mutual exchange of the extrinsic information resulted by the LDPC code employed by the source and its counterpart used by the relay in both ideal and non-ideal cooperations.
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61372074 and 91438101)the National High Technology Research and Development Program of China(Grant No.2015AA01A709)
文摘The girth plays an important role in the design of LDPC codes. In order to determine the girth of Tanner(5,7) quasi-cyclic( QC) LDPC codes with length 7p for p being a prime with the form 35 m + 1,the cycles of lengths 4,6,8,and 10 are analyzed. Then these cycles are classified into sixteen categories,each of which can be expressed as an ordered block sequence,or a certain type. It is also shown that the existence of these cycles is equal to polynomial equations over Fpwho has a 35th unit root. We check if these polynomial equations have a 35th unit root and obtain the girth values of Tanner(5,7) QC LDPC codes.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.11361024,61472138)the Provincial Natural Science Foundation(Grant Nos.20171BAB201009,20161BAB202066)the Jiangxi Provincial Science and Technology Project(Grant No.KJLD12067)
文摘Let G =( V,E) be a connected graph and W = { w_1,w_2,…,w_k} be an ordered subset of V( G).For any vertex v ∈V,the locating code of v with respect to W is the k-vector CW( v) = { d( v,w_1),d( v,w_2),…,d( v,w_k) },W is said to be a locating set of G if distinct vertices have the distinct locating code,and the locating number of G is defined as: Loc( G) = min{ | W| : W is a locating set of G}.We study the locating set and locating number of a graph G,obtain some bounds for the locating numbers of graphs,and determine the exact value of Loc( G) for some special classes of graphs,such as cycles,wheels,complete t-partite graph and some Cartesian products of paths and cycles. In addition,we also prove that Loc( T) ≥Δ-1 holds for all trees T with maximum degree Δ,and shows a tree T with Loc( T) = Δ-1.
基金supported by Commission of Science Technology and Industry for National Defence of China under Grant No.A1420061264National Natural Science Foundation of China under Grant No.60934002General Armament Department under Grand No.51317040102)
文摘Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In this paper, this problem is formulated as a heuristic depth-first graph search problem at first. The graph node expanding method and rules are given. Then, rollout strategies are applied, which can be combined with the heuristic graph search algorithms, in a computationally more efficient manner than the optimal strategies, to obtain solutions superior to those using the greedy heuristic algorithms. The proposed rollout-based test points selection algorithm is illustrated and tested using an analog circuit and a set of simulated integer-coded fault wise tables. Computa- tional results are shown, which suggest that the rollout strategy policies are significantly better than other strategies.
基金Supported by the Postdoctoral Science Foundation of China(2014M561694)the Science and Technology on Avionics Integration Laboratory and National Aeronautical Science Foundation of China(20105552)
文摘A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with multiple sources simultaneously via network-coding.It avoids the issues of imperfect frequency/timing synchronization and large transmission delay which may be introduced by frequency-division multiple access(FDMA)/code-division multiple access(CDMA)and time-division multiple access(TDMA)manners.The proposed joint″Min-Sum″iterative decoding is effectively carried out in the destination.Such a decoding algorithm agrees with the introduced equivalent joint Tanner graph which can be used to fully characterize LDPC codes employed by the sources and relay.Theoretical analysis and numerical simulation show that the proposed scheme with joint iterative decoding can achieve significant cooperation diversity gain.Furthermore,for the relay,compared with the cascade scheme,the proposed scheme has much lower complexity of LDPC-encoding and is easier to be implemented in the hardware with similar bit error rate(BER)performance.