A variable-bit-rate characteristic waveform interpolation (VBR-CWI) speech codec with about 1.8 kbit/s average bit rate which integrates phonetic classification into characteristic waveform (CW) decomposition is p...A variable-bit-rate characteristic waveform interpolation (VBR-CWI) speech codec with about 1.8 kbit/s average bit rate which integrates phonetic classification into characteristic waveform (CW) decomposition is proposed. Each input frame is classified into one of 4 phonetic classes. Non-speech frames are represented with Bark-band noise model. The extracted CWs become rapidly evolving waveforms (REWs) or slowly evolving waveforms (SEWs) in the cases of unvoiced or stationary voiced frames respectively, while mixed voiced frames use the same CW decomposition as that in the conventional CWI. Experimental results show that the proposed codec can eliminate most buzzy and noisy artifacts existing in the fixed-bit-rate characteristic waveform interpolation (FBR-CWI) speech codec, the average bit rate can be much lower, and its reconstructed speech quality is much better than FS 1 016 CELP at 4.8 kbit/s and similar to G. 723.1 ACELP at 5.3 kbit/s.展开更多
Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing T...Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing Transfer Function H(f) the coding gain and spectral efficiency are both achieved.The heavier the overlap of the data weighted Multiplexing Transfer Function H(f),the higher the coding gain and spectral efficiency as well as the closer the output to the optimum complex Gaussian distribution.The bit error probability performance is estimated.The time domain OVTDM(Overlapped Time Domain Multiplexing) Coding,the dual of OVFDM in time domain is incidentally proposed as well.Both theoretical analysis and testified simulations show that OVFDM(OVTDM) is suitable for high spectral efficiency application and its spectral efficiency is only roughly linear to SNR rather than the well-known logarithm to SNR.展开更多
The most popular and representative classic waveform codes are referred to as orthogonal,bi-orthogonal,simplex,and etc,but the choice of waveform codes is essentially identical in error performance and cross correlati...The most popular and representative classic waveform codes are referred to as orthogonal,bi-orthogonal,simplex,and etc,but the choice of waveform codes is essentially identical in error performance and cross correlation characteristic.Though bi-orthogonal coding requires half the bandwidth of the others,such coding scheme is attractive only when large bandwidth is available.In this paper,a novel finite projective plane(FPP) based waveform coding scheme is proposed,which is with similar error performance and cross correlation.Nevertheless,the bandwidth requirement will grow in a quadratic way,but not in an exponential way with the values of message bit numbers(k).The proposed scheme takes obvious advantages over the bi-orthogonal scheme when k ≥ 6.展开更多
<div style="text-align:justify;"> A photonics approach to generate a linearly chirped waveform with increased TBWP is proposed and investigated. The time bandwidth product (TBWP) of the linearly chirpe...<div style="text-align:justify;"> A photonics approach to generate a linearly chirped waveform with increased TBWP is proposed and investigated. The time bandwidth product (TBWP) of the linearly chirped waveform is improved based on optical microwave frequency multiplying combined with temporal synthesis. An integrated dual-polarization modulator and an optical filter are utilized to perform frequency doubling operation by generating an orthogonally polarized optical signal, which consists of an optical carrier in one polarization direction and a second-order chirped optical sideband in another. Then the orthogonally polarized optical signal puts into a polarization modulator (PolM) to perform phase coding process. By driving a Pseudorandom (PN) sequence to the PolM, the time duration of the generated bandwidth doubled linearly chirped waveform can be synthesized to arbitrary length. The approach is verified by simulation. A linearly chirped waveform with central frequency of 8.25 GHz, bandwidth of 500 MHz, time duration of 6.4 ns is used to generate a synthesized waveform with central frequency of 16.5 GHz, bandwidth of 1 GHz, time duration of 819.2 ns. The TBWP of the linearly chirped signal is improved from 3.2 to 819.2. The proposed method features arbitrary large TBWP, and it can be used in a radar system to improve its resolution. </div>展开更多
文摘A variable-bit-rate characteristic waveform interpolation (VBR-CWI) speech codec with about 1.8 kbit/s average bit rate which integrates phonetic classification into characteristic waveform (CW) decomposition is proposed. Each input frame is classified into one of 4 phonetic classes. Non-speech frames are represented with Bark-band noise model. The extracted CWs become rapidly evolving waveforms (REWs) or slowly evolving waveforms (SEWs) in the cases of unvoiced or stationary voiced frames respectively, while mixed voiced frames use the same CW decomposition as that in the conventional CWI. Experimental results show that the proposed codec can eliminate most buzzy and noisy artifacts existing in the fixed-bit-rate characteristic waveform interpolation (FBR-CWI) speech codec, the average bit rate can be much lower, and its reconstructed speech quality is much better than FS 1 016 CELP at 4.8 kbit/s and similar to G. 723.1 ACELP at 5.3 kbit/s.
基金The NNSF(National Nature Science Foundation)of China for their continuously long term support by key projects
文摘Based on the Overlapped Multiplexing Principle[12],a frequency domain OVFDM(Overlapped Frequency Domain Multiplexing) Coding is proposed.By the data weighted shift overlapped version of any band-limited Multiplexing Transfer Function H(f) the coding gain and spectral efficiency are both achieved.The heavier the overlap of the data weighted Multiplexing Transfer Function H(f),the higher the coding gain and spectral efficiency as well as the closer the output to the optimum complex Gaussian distribution.The bit error probability performance is estimated.The time domain OVTDM(Overlapped Time Domain Multiplexing) Coding,the dual of OVFDM in time domain is incidentally proposed as well.Both theoretical analysis and testified simulations show that OVFDM(OVTDM) is suitable for high spectral efficiency application and its spectral efficiency is only roughly linear to SNR rather than the well-known logarithm to SNR.
基金supported by MOST under Grant MOST 103-2633-E-242-002
文摘The most popular and representative classic waveform codes are referred to as orthogonal,bi-orthogonal,simplex,and etc,but the choice of waveform codes is essentially identical in error performance and cross correlation characteristic.Though bi-orthogonal coding requires half the bandwidth of the others,such coding scheme is attractive only when large bandwidth is available.In this paper,a novel finite projective plane(FPP) based waveform coding scheme is proposed,which is with similar error performance and cross correlation.Nevertheless,the bandwidth requirement will grow in a quadratic way,but not in an exponential way with the values of message bit numbers(k).The proposed scheme takes obvious advantages over the bi-orthogonal scheme when k ≥ 6.
文摘<div style="text-align:justify;"> A photonics approach to generate a linearly chirped waveform with increased TBWP is proposed and investigated. The time bandwidth product (TBWP) of the linearly chirped waveform is improved based on optical microwave frequency multiplying combined with temporal synthesis. An integrated dual-polarization modulator and an optical filter are utilized to perform frequency doubling operation by generating an orthogonally polarized optical signal, which consists of an optical carrier in one polarization direction and a second-order chirped optical sideband in another. Then the orthogonally polarized optical signal puts into a polarization modulator (PolM) to perform phase coding process. By driving a Pseudorandom (PN) sequence to the PolM, the time duration of the generated bandwidth doubled linearly chirped waveform can be synthesized to arbitrary length. The approach is verified by simulation. A linearly chirped waveform with central frequency of 8.25 GHz, bandwidth of 500 MHz, time duration of 6.4 ns is used to generate a synthesized waveform with central frequency of 16.5 GHz, bandwidth of 1 GHz, time duration of 819.2 ns. The TBWP of the linearly chirped signal is improved from 3.2 to 819.2. The proposed method features arbitrary large TBWP, and it can be used in a radar system to improve its resolution. </div>