Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulti...Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.展开更多
This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Syste...This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.展开更多
In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete mem...In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.展开更多
In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver comp...In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).展开更多
At present,convolutional neural networks(CNNs)and transformers surpass humans in many situations(such as face recognition and object classification),but do not work well in identifying fibers in textile surface images...At present,convolutional neural networks(CNNs)and transformers surpass humans in many situations(such as face recognition and object classification),but do not work well in identifying fibers in textile surface images.Hence,this paper proposes an architecture named FiberCT which takes advantages of the feature extraction capability of CNNs and the long-range modeling capability of transformer decoders to adaptively extract multiple types of fiber features.Firstly,the convolution module extracts fiber features from the input textile surface images.Secondly,these features are sent into the transformer decoder module where label embeddings are compared with the features of each type of fibers through multi-head cross-attention and the desired features are pooled adaptively.Finally,an asymmetric loss further purifies the extracted fiber representations.Experiments show that FiberCT can more effectively extract the representations of various types of fibers and improve fiber identification accuracy than state-of-the-art multi-label classification approaches.展开更多
A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the we...A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the weighted coefficient of the Chien search method is calculated sequentially through the three pipelined stages of the decoder. And therefore, the computation of the errata locator polynomial and errata evaluator polynomial needs to be modified. The versatile RS decoder with minimum distance 21 has been synthesized in the Xilinx Virtex-Ⅱ series field programmable gate array (FPGA) xe2v1000-5 and is used by coneatenated coding system for satellite communication. Results show that the maximum data processing rate can be up to 1.3 Gbit/s.展开更多
The error correction performance of Belief Propagation(BP)decoding for polar codes is satisfactory compared with the Successive Cancellation(SC)decoding.Nevertheless,it has to complete a fixed number of iterations,whi...The error correction performance of Belief Propagation(BP)decoding for polar codes is satisfactory compared with the Successive Cancellation(SC)decoding.Nevertheless,it has to complete a fixed number of iterations,which results in high computational complexity.This necessitates an intelligent identification of successful BP decoding for early termination of the decoding process to avoid unnecessary iterations and minimize the computational complexity of BP decoding.This paper proposes a hybrid technique that combines the“paritycheck”with the“G-matrix”to reduce the computational complexity of BP decoder for polar codes.The proposed hybrid technique takes advantage of the parity-check to intelligently identify the valid codeword at an early stage and terminate the BP decoding process,which minimizes the overhead of the G-matrix and reduces the computational complexity of BP decoding.We explore a detailed mechanism incorporating the parity bits as outer code and prove that the proposed hybrid technique minimizes the computational complexity while preserving the BP error correction performance.Moreover,mathematical formulation for the proposed hybrid technique that minimizes the computation cost of the G-matrix is elaborated.The performance of the proposed hybrid technique is validated by comparing it with the state-of-the-art early stopping criteria for BP decoding.Simulation results show that the proposed hybrid technique reduces the iterations by about 90%of BP decoding in a high Signal-to-Noise Ratio(SNR)(i.e.,3.5~4 dB),and approaches the error correction performance of G-matrix and conventional BP decoder for polar codes.展开更多
Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Seri...Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Serial Genetic Algorithm Decoder (SGAD) for decoding Low Density Parity Check (LDPC) codes. The results show that the proposed algorithm gives large gains over sum-product decoder, which proves its efficiency.展开更多
A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) mult...A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) multipliers and pre-computing the common items, the GOA can reduce the number of XOR gates efficiently and thus reduce the circuit area. Different from other local optimization algorithms, the GOA is a global one. When there are more than one maximum matches at a time, the best match choice in the GOA has the least impact on the final result by only choosing the pair with the smallest relational value instead of choosing a pair randomly. The results show that the area of parallel Chien search circuits can be reduced by 51% compared to the direct implementation when the group-based GOA is used for GF multipliers and by 26% if applying the GOA to GF multipliers separately. This optimization scheme can be widely used in general parallel architecture in which many GF multipliers are involved.展开更多
This paper presents an efficient VLSI architecture of the contest-based adaptive variable length code (CAVLC) decoder with power optimized for the H.264/advanced video coding (AVC) standard. In the proposed design...This paper presents an efficient VLSI architecture of the contest-based adaptive variable length code (CAVLC) decoder with power optimized for the H.264/advanced video coding (AVC) standard. In the proposed design, according to the regularity of the codewords, the first one detector is used to solve the low efficiency and high power dissipation problem within the traditional method of table-searching. Considering the relevance of the data used in the process of runbefore's decoding, arithmetic operation is combined with finite state machine (FSM), which achieves higher decoding efficiency. According to the CAVLC decoding flow, clock gating is employed in the module level and the register level respectively, which reduces 43% of the overall dynamic power dissipation. The proposed design can decode every syntax element in one clock cycle. When the proposed design is synthesized at the clock constraint of 100 MHz, the synthesis result shows that the design costs 11 300 gates under a 0.25 μm CMOS technology, which meets the demand of real time decoding in the H.264/AVC standard.展开更多
The first domestic total dose hardened 2μm partially depleted silicon-on-insulator (PDSOI) CMOS 3-line to 8- line decoder fabricated in SIMOX is demonstrated. The radiation performance is characterized by transisto...The first domestic total dose hardened 2μm partially depleted silicon-on-insulator (PDSOI) CMOS 3-line to 8- line decoder fabricated in SIMOX is demonstrated. The radiation performance is characterized by transistor threshold voltage shifts,circuit static leakage currents,and I-V curves as a function of total dose up to 3× 10^5rad(Si). The worst case threshold voltage shifts of the front channels are less than 20mV for nMOS transistors at 3 × 10^5rad(Si) and follow-up irradiation and less than 70mV for the pMOS transistors. Furthermore, no significant radiation induced leakage currents and functional degeneration are observed.展开更多
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err...Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.展开更多
In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is a...In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is applied, two time slots are sufficient for one round information exchange. In this paper, we present a decode-and-forward(DF) scheme based on joint LDPC decoding for three-way relay channels, where relay decoder partially decodes the network code rather than fully decodes all the user messages. Simulation results show that the new DF scheme considerably outperforms other common schemes in three-way relay fading channels.展开更多
A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circula...A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.展开更多
Offset Shuffle Networks(OSNs) interleave a-posterior probability messages in the Block Row-Layered Decoder(BRLD) of QuasiCyclic Low-Density Parity-Check(QC-LDPC)codes.However,OSNs usually consume a significant amount ...Offset Shuffle Networks(OSNs) interleave a-posterior probability messages in the Block Row-Layered Decoder(BRLD) of QuasiCyclic Low-Density Parity-Check(QC-LDPC)codes.However,OSNs usually consume a significant amount of computational resources and limit the clock frequency,particularly when the size of the Circulant Permutation Matrix(CPM)is large.To simplify the architecture of the OSN,we propose a Simplified Offset Shuffle Network Block Progressive Edge-Growth(SOSNBPEG) algorithm to construct a class of QCLDPC codes.The SOSN-BPEG algorithm constrains the shift values of CPMs and the difference of the shift values in the same column by progressively appending check nodes.Simulation results indicate that the error performance of the SOSN-BPEG codes is the same as that of the codes in WiMAX and DVB-S2.The SOSNBPEG codes can reduce the complexity of the OSNs by up to 54.3%,and can improve the maximum frequency by up to 21.7%for various code lengths and rates.展开更多
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805。
文摘Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.
基金supported by the Fundamental Research Funds for the Central Universities(FRF-TP20-062A1)Guangdong Basic and Applied Basic Research Foundation(2021A1515110070)。
文摘This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.
基金financially supported in part by National Key R&D Program of China(No.2018YFB1801402)in part by Huawei Technologies Co.,Ltd.
文摘In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.
基金supported in part by the National Natural Science Foundation of China under Grant 92067202,Grant 62071058.
文摘In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).
基金National Natural Science Foundation of China(No.61972081)Fundamental Research Funds for the Central Universities,China(No.2232023Y-01)Natural Science Foundation of Shanghai,China(No.22ZR1400200)。
文摘At present,convolutional neural networks(CNNs)and transformers surpass humans in many situations(such as face recognition and object classification),but do not work well in identifying fibers in textile surface images.Hence,this paper proposes an architecture named FiberCT which takes advantages of the feature extraction capability of CNNs and the long-range modeling capability of transformer decoders to adaptively extract multiple types of fiber features.Firstly,the convolution module extracts fiber features from the input textile surface images.Secondly,these features are sent into the transformer decoder module where label embeddings are compared with the features of each type of fibers through multi-head cross-attention and the desired features are pooled adaptively.Finally,an asymmetric loss further purifies the extracted fiber representations.Experiments show that FiberCT can more effectively extract the representations of various types of fibers and improve fiber identification accuracy than state-of-the-art multi-label classification approaches.
基金Sponsored by the Ministerial Level Advanced Research Foundation (20304)
文摘A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the weighted coefficient of the Chien search method is calculated sequentially through the three pipelined stages of the decoder. And therefore, the computation of the errata locator polynomial and errata evaluator polynomial needs to be modified. The versatile RS decoder with minimum distance 21 has been synthesized in the Xilinx Virtex-Ⅱ series field programmable gate array (FPGA) xe2v1000-5 and is used by coneatenated coding system for satellite communication. Results show that the maximum data processing rate can be up to 1.3 Gbit/s.
基金This work is partially supported by the National Key Research and Development Project under Grant 2018YFB1802402.
文摘The error correction performance of Belief Propagation(BP)decoding for polar codes is satisfactory compared with the Successive Cancellation(SC)decoding.Nevertheless,it has to complete a fixed number of iterations,which results in high computational complexity.This necessitates an intelligent identification of successful BP decoding for early termination of the decoding process to avoid unnecessary iterations and minimize the computational complexity of BP decoding.This paper proposes a hybrid technique that combines the“paritycheck”with the“G-matrix”to reduce the computational complexity of BP decoder for polar codes.The proposed hybrid technique takes advantage of the parity-check to intelligently identify the valid codeword at an early stage and terminate the BP decoding process,which minimizes the overhead of the G-matrix and reduces the computational complexity of BP decoding.We explore a detailed mechanism incorporating the parity bits as outer code and prove that the proposed hybrid technique minimizes the computational complexity while preserving the BP error correction performance.Moreover,mathematical formulation for the proposed hybrid technique that minimizes the computation cost of the G-matrix is elaborated.The performance of the proposed hybrid technique is validated by comparing it with the state-of-the-art early stopping criteria for BP decoding.Simulation results show that the proposed hybrid technique reduces the iterations by about 90%of BP decoding in a high Signal-to-Noise Ratio(SNR)(i.e.,3.5~4 dB),and approaches the error correction performance of G-matrix and conventional BP decoder for polar codes.
文摘Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Serial Genetic Algorithm Decoder (SGAD) for decoding Low Density Parity Check (LDPC) codes. The results show that the proposed algorithm gives large gains over sum-product decoder, which proves its efficiency.
文摘A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) multipliers and pre-computing the common items, the GOA can reduce the number of XOR gates efficiently and thus reduce the circuit area. Different from other local optimization algorithms, the GOA is a global one. When there are more than one maximum matches at a time, the best match choice in the GOA has the least impact on the final result by only choosing the pair with the smallest relational value instead of choosing a pair randomly. The results show that the area of parallel Chien search circuits can be reduced by 51% compared to the direct implementation when the group-based GOA is used for GF multipliers and by 26% if applying the GOA to GF multipliers separately. This optimization scheme can be widely used in general parallel architecture in which many GF multipliers are involved.
基金Project supported by the Applied Materials Shanghai Research and Development Foundation (Grant No.08700741000)the Foundation of Shanghai Municipal Education Commission (Grant No.2006AZ068)
文摘This paper presents an efficient VLSI architecture of the contest-based adaptive variable length code (CAVLC) decoder with power optimized for the H.264/advanced video coding (AVC) standard. In the proposed design, according to the regularity of the codewords, the first one detector is used to solve the low efficiency and high power dissipation problem within the traditional method of table-searching. Considering the relevance of the data used in the process of runbefore's decoding, arithmetic operation is combined with finite state machine (FSM), which achieves higher decoding efficiency. According to the CAVLC decoding flow, clock gating is employed in the module level and the register level respectively, which reduces 43% of the overall dynamic power dissipation. The proposed design can decode every syntax element in one clock cycle. When the proposed design is synthesized at the clock constraint of 100 MHz, the synthesis result shows that the design costs 11 300 gates under a 0.25 μm CMOS technology, which meets the demand of real time decoding in the H.264/AVC standard.
文摘The first domestic total dose hardened 2μm partially depleted silicon-on-insulator (PDSOI) CMOS 3-line to 8- line decoder fabricated in SIMOX is demonstrated. The radiation performance is characterized by transistor threshold voltage shifts,circuit static leakage currents,and I-V curves as a function of total dose up to 3× 10^5rad(Si). The worst case threshold voltage shifts of the front channels are less than 20mV for nMOS transistors at 3 × 10^5rad(Si) and follow-up irradiation and less than 70mV for the pMOS transistors. Furthermore, no significant radiation induced leakage currents and functional degeneration are observed.
基金the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Project of Shandong Province Higher Educational Science and Technology Program,China(Grant No.J18KZ012).
文摘Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.
基金supported in part by the National Natural Science Foundation of China under Grant 61201187by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110+2 种基金by the Tsinghua University Initiative Scientific Research Program under Grant 20121088074by the Foundation of Zhejiang Educational Committee under Grant Y201121579by the Visiting Scholar Professional Development Project of Zhejiang Educational Committee under Grant FX2014052
文摘In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is applied, two time slots are sufficient for one round information exchange. In this paper, we present a decode-and-forward(DF) scheme based on joint LDPC decoding for three-way relay channels, where relay decoder partially decodes the network code rather than fully decodes all the user messages. Simulation results show that the new DF scheme considerably outperforms other common schemes in three-way relay fading channels.
文摘A method of digitally high pass filtering in frequency domain is proposed to eliminate the background noise of the decoded image in Fresnel zone plate scanning holography. The high pass filter is designed as a circular stop, which should be suitable to suppressing the background noise significantly and remain much low frequency information of the object. The principle of high pass filtering is that the Fourier transform of the decoded image is multiplied with the high pass filter. Thus the frequency spectrum of the decoded image without the background noise is achieved. By inverse Fourier transform of the spectrum of the decoded image after multiplying operation, the decoded image without the background noise is obtained. Both of the computer simulations and the experimental results show that the contrast and the signal-to-noise ratio of the decoded image are significantly improved with digital filtering.
基金supported by the National Natural Science Foundation of China under Grant No.61071083
文摘Offset Shuffle Networks(OSNs) interleave a-posterior probability messages in the Block Row-Layered Decoder(BRLD) of QuasiCyclic Low-Density Parity-Check(QC-LDPC)codes.However,OSNs usually consume a significant amount of computational resources and limit the clock frequency,particularly when the size of the Circulant Permutation Matrix(CPM)is large.To simplify the architecture of the OSN,we propose a Simplified Offset Shuffle Network Block Progressive Edge-Growth(SOSNBPEG) algorithm to construct a class of QCLDPC codes.The SOSN-BPEG algorithm constrains the shift values of CPMs and the difference of the shift values in the same column by progressively appending check nodes.Simulation results indicate that the error performance of the SOSN-BPEG codes is the same as that of the codes in WiMAX and DVB-S2.The SOSNBPEG codes can reduce the complexity of the OSNs by up to 54.3%,and can improve the maximum frequency by up to 21.7%for various code lengths and rates.