To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First,...To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First, it extracts the frame coding complexity from two rate distortion models, and then introduces five statistic modes to estimate the frame coding complexity. An optimal mode is selected according to the coding efficiency. Finally the paper presents a novel QP calculation method for the H.264/AVC rate control. Experimental results show that the proposed algorithra outperforms the algorithm integrated in the 3M model in obtaining precise frame coding complexity, achieving robust buffer control and improving coding quality. And the improving visual quality is high up to 0.90dB for CIF sequences.展开更多
The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduce...The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
Wireless relay and network coding are two critical techniques to increase the reliability and throughput of wireless cooperative communication systems. In this paper, a complex field network coding (CFNC) scheme wit...Wireless relay and network coding are two critical techniques to increase the reliability and throughput of wireless cooperative communication systems. In this paper, a complex field network coding (CFNC) scheme with the K-th best relay selection (KBS) is proposed and investigated, wherein the K-th best relay is selected to forward the multiplexed signal to the destination. First, the upper bound of the symbol error probability (SEP), the diversity order, and the coding gain are derived for the CFNC scheme with KBS. Then, the coding gain is utilized as the optimized cri- terion to determine the optimal power allocation. It is validated through analysis and simulation that the CFNC scheme with KBS can achieve full diversity only when K=I, while the diversity order decreases with increasing parameter K, and the optimal power allocation can significantly improve the performance of the CFNC scheme with KBS.展开更多
This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can imp...This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can improve the PAPR property of the MC-CDMA signals, but this technique requires an exhaustive search over the combinations of spreading code sets. It is observed that when the number of active users increases, the search complexity will increase exponentially. Based on this fact, we propose a low complexity VCS (LC-VCS) method to reduce the computational complexity. The basic idea of LC-VCS is to derive new signals using the relationship between candidature signals. Simulation results show that the proposed approach can reduce PAPR with lower comtational pucomplexity. In addition, it can be blindly received without any side information.展开更多
The additives such as phosphoric acid, calcium phosphate, calcium super phosphate, calcium over super phosphate, calcium carbonate, sodium hydrosulphite, etc. were used to produce furfural from the straw by hydrolys...The additives such as phosphoric acid, calcium phosphate, calcium super phosphate, calcium over super phosphate, calcium carbonate, sodium hydrosulphite, etc. were used to produce furfural from the straw by hydrolysis with sulfuric acid. The effect of amount of the additives, the content of the added substance and the conditions of distillation on the acidity of the residues were studied. The experiment results showed that the all residues became neutral complex fertilizer, and the productivity of furfural increases under the following conditions: sulfuric acid concentration is 20% (by weight), the ratio of liquid to solid is 3∶1—4∶1 (by weight), the ratio of the additives to straw is suitable.展开更多
The complex orthogonal designs with maximal rates and minimal delays is an open problem for space-time block code. Maximal rate can effectively transmit symbols to the lonest distance in the space dimension ; and mini...The complex orthogonal designs with maximal rates and minimal delays is an open problem for space-time block code. Maximal rate can effectively transmit symbols to the lonest distance in the space dimension ; and minimal delay is the least decoding delay in the time dimension. Many authors have observed that regarding the complex orthogonal designs for space-time block codes with the antennas n = 4k ( k ∈ N ), its minimal delay is the same as that for n - 4k -1. However none was able to prove it. In this paper, we use the characteristics of Hadamard matrix to prove this property to fulfill this vacancy.展开更多
基金Supported by the Nat:onal Natural Science Foundation of China (No. 60873185) and the Foundation of Science & Technology Department of Sichuan Province (No. 2011HH0037).
文摘To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First, it extracts the frame coding complexity from two rate distortion models, and then introduces five statistic modes to estimate the frame coding complexity. An optimal mode is selected according to the coding efficiency. Finally the paper presents a novel QP calculation method for the H.264/AVC rate control. Experimental results show that the proposed algorithra outperforms the algorithm integrated in the 3M model in obtaining precise frame coding complexity, achieving robust buffer control and improving coding quality. And the improving visual quality is high up to 0.90dB for CIF sequences.
基金Project(08Y29-7)supported by the Transportation Science and Research Program of Jiangsu Province,ChinaProject(201103051)supported by the Major Infrastructure Program of the Health Monitoring System Hardware Platform Based on Sensor Network Node,China+1 种基金Project(61100111)supported by the National Natural Science Foundation of ChinaProject(BE2011169)supported by the Scientific and Technical Supporting Program of Jiangsu Province,China
文摘The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).
基金supported by the Major State Basic Research Development Program of China(973 Program No.2012CB316100)the National Natural Science Foundation of China(Nos.61032002/61271246)the 111 Project(No.111-2-14)
文摘Wireless relay and network coding are two critical techniques to increase the reliability and throughput of wireless cooperative communication systems. In this paper, a complex field network coding (CFNC) scheme with the K-th best relay selection (KBS) is proposed and investigated, wherein the K-th best relay is selected to forward the multiplexed signal to the destination. First, the upper bound of the symbol error probability (SEP), the diversity order, and the coding gain are derived for the CFNC scheme with KBS. Then, the coding gain is utilized as the optimized cri- terion to determine the optimal power allocation. It is validated through analysis and simulation that the CFNC scheme with KBS can achieve full diversity only when K=I, while the diversity order decreases with increasing parameter K, and the optimal power allocation can significantly improve the performance of the CFNC scheme with KBS.
文摘This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can improve the PAPR property of the MC-CDMA signals, but this technique requires an exhaustive search over the combinations of spreading code sets. It is observed that when the number of active users increases, the search complexity will increase exponentially. Based on this fact, we propose a low complexity VCS (LC-VCS) method to reduce the computational complexity. The basic idea of LC-VCS is to derive new signals using the relationship between candidature signals. Simulation results show that the proposed approach can reduce PAPR with lower comtational pucomplexity. In addition, it can be blindly received without any side information.
文摘The additives such as phosphoric acid, calcium phosphate, calcium super phosphate, calcium over super phosphate, calcium carbonate, sodium hydrosulphite, etc. were used to produce furfural from the straw by hydrolysis with sulfuric acid. The effect of amount of the additives, the content of the added substance and the conditions of distillation on the acidity of the residues were studied. The experiment results showed that the all residues became neutral complex fertilizer, and the productivity of furfural increases under the following conditions: sulfuric acid concentration is 20% (by weight), the ratio of liquid to solid is 3∶1—4∶1 (by weight), the ratio of the additives to straw is suitable.
文摘The complex orthogonal designs with maximal rates and minimal delays is an open problem for space-time block code. Maximal rate can effectively transmit symbols to the lonest distance in the space dimension ; and minimal delay is the least decoding delay in the time dimension. Many authors have observed that regarding the complex orthogonal designs for space-time block codes with the antennas n = 4k ( k ∈ N ), its minimal delay is the same as that for n - 4k -1. However none was able to prove it. In this paper, we use the characteristics of Hadamard matrix to prove this property to fulfill this vacancy.