We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the...We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the practicality from the experimental results. The reactor module employed was an aluminum plate-tube heat exchanger with corrugated fins, and the CaCl<sub>2</sub> powder was in the form of a packed bed. Heat storage operation and heat dissipation operation are performed at the same time and supplied to the heat demand destination. At this time, an environmental heat source can be used during the heat radiation operation, and the heat output can release more heat than the heat input during heat storage. The heat discharging and charging characteristics of the reactor module were evaluated experimentally. The coefficient of performance (COP) was calculated for the heat upgrading cycle, and the heat output in the system was determined. A COP of 1.42 and output of 650 W/L, based on the heat exchanger volume, were obtained using a 600 s change time for the heat pump.展开更多
In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis ...In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.展开更多
Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and ...Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and the coefficient of performance are plotted by numerical calculation. It is shown that the maximum cooling rate of the thermoelectric refrigerator with two resonances increases but the maximum coefficient of performance decreases compared with those with one resonance. No matter which resonance mechanism is used (kx or kr filtered), the cooling rate and the performance coefficient of the kr filtered refrigerator are much better than those of the kx filtered one.展开更多
In this paper, the theoretical analysis and simulating calculation were conducted for a basic two-stage semiconductor thermoelectric module, which contains one thermocouple in the second stage and several thermocouple...In this paper, the theoretical analysis and simulating calculation were conducted for a basic two-stage semiconductor thermoelectric module, which contains one thermocouple in the second stage and several thermocouples in the first stage. The study focused on the configuration of the two-stage semiconductor thermoelectric cooler, especially investigating the influences of some parameters, such as the current I1 of the first stage, the area A1 of every thermocouple and the number n of thermocouples in the first stage, on the cooling performance of the module. The obtained results of analysis indicate that changing the current I1 of the first stage, the area A1 of thermocouples and the number n of thermocouples in the first stage can improve the cooling performance of the module. These results can be used to optimize the configuration of the two-stage semiconductor thermoelectric module and provide guides for the design and application of thermoelectric cooler.展开更多
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water whe...Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water when the low temperature was 20 ℃. The following results were obtained: the highest temperature at the condenser outlet reached about 85 ℃; when the difference between the water temperatures at the condenser outlet and the evaporator inlet was less than 40 ℃, the coefficient of performance (COP) was larger than 4; when the difference reached 55 ℃, the COP still kept 3; the discharge temperature of BY-3 was lower than 100 ℃, and the refrigerant vapor pressure kept lower than 1.8 MPa. When the water temperature at the condenser outlet reached over 85 ℃, nearly a 5 ℃ superheating temperature was maintained.展开更多
In the present study,an attempt ismade to enhance the performance of heat pump by utilizing two types of nanofluids namely,copper and alumina nanofluids.These nanofluids were employed around the evaporator coil of the...In the present study,an attempt ismade to enhance the performance of heat pump by utilizing two types of nanofluids namely,copper and alumina nanofluids.These nanofluids were employed around the evaporator coil of the heat pump.The nanofluids were used to enhance the heat input to the system by means of providing an external jacket around the evaporator coil.Both the nanofluids were prepared in three volume fractions 1%,2%and 5%.Water was chosen as the base fluid.The performance of the heat pump was assessed by calculating the coefficient of performance of the system when it was operated with and without nanofluid jacket.A significant enhancement in the coefficient of performance was noticed when copper and alumina nanofluids were employed in the system.Also,the coefficient of performance was found to have a direct relationship with the tested volume fractions.For the highest volume fraction of 5%,the performance of the heat pump was found to enhance by 23%with alumina nanofluid,while for copper nanofluid,a very significant enhancement in performance by 72%was observed.Thus,utilizing of nanofluids in heat pumps can be very beneficial towards performance enhancement and the idea can also be extended to other thermal systems such as steam power plant,automobile radiator,industrial heat exchangers and refrigeration systems.展开更多
Cooling in industrial production and refrigeration of perishable and</span><span style="font-size:10.0pt;font-family:""> non-</span><span style="font-size:10.0pt;font-family:&q...Cooling in industrial production and refrigeration of perishable and</span><span style="font-size:10.0pt;font-family:""> non-</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">perishable products is common practice throughout the world. Research studies have been conducted both experimentally and numerically to simulate Vapor Compression Refrigeration System (VCRS) and its performance respectively, however, experimental procedure often seems to be expensive and time-consuming to carry out due to the function of many variables. This study was therefore designed to numerically simulate the performance assessment of a nanoparticle enhanced VCRS. A numerical model of a vapor compression refrigeration system was developed using standard refrigeration equations on each of the major components of the refrigeration system such as compressor, evaporator, condenser and expansion valve. The model was then simulated on a MATLAB platform with a CoolProp installed packages via Python under two different simulation cases. In the first case, the mass fractions were varied for CuO,</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanoparticles while their densities remained constant and a reversed condition was investigated for the second case. The results showed that both the refrigerating effect and the Coefficient Of Performance (COP) of the system increase as both the mass fraction and density of all the nanoparticles increases. It also shows that the compressor work decreases as both the mass fraction and density of all the nanoparticles were increased. On comparing the computational and numerical analysis results, the study established no significant difference in terms of COP and the use of nanoparticles were found to have improved the COP of the system.展开更多
In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study des...In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.展开更多
With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal ...With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal hydride selection model.The experimental results show that the refigeration cycle of the selected couple is good in the performance.The recovered waste heat and refrigeration power from exhaust gas of several kinds of automobile are calculated by waste-heat formula,coefficient R Q and COP.Refrigeration cycle of the new couple can satisfy the air-conditioning requirement of truck and car and is not enough in passenger car,according to the respective cooling load.展开更多
A refrigerant mixture TJR02 was developed and the comparison experiment was performed on a singlestage vapor compression refrigeration system originally designed for R22.Experimental results show that TJR02 can be dir...A refrigerant mixture TJR02 was developed and the comparison experiment was performed on a singlestage vapor compression refrigeration system originally designed for R22.Experimental results show that TJR02 can be directly used in the system without modifying the original system or changing lubricant.By replacing R22 with TJR02,cooling rate gets faster and at least 20% of energy is saved.The actual detection in the standard test-bed verifies the experimental results and indicates that the adoption of TJR02 leads to greater efficiency and wider application.And the lower the refrigeratory temperature is,the more obvious the energy saving effects will be.展开更多
The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order t...The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order to predict the behaviors of the adsorption chiller system and find the influence of working conditions on its operation. For the working process of the main components of the system, including adsorber, condenser and evaporator, the coupled unsteady equations were set up for each stage. The model was then solved using stable numerical methods from EES (equation engineering solver), and the performance of the adsorber and condenser/evaporator of the system was analyzed. The condensation, evaporation and adsorber temperature values as well as the adsorption ratio and desorption ratio were obtained as function of operating time. Also, the coefficient of performance was analyzed in function of the heat source temperature and the cooling source temperature.展开更多
This paper deals with the evaluation of the Coefficient of Performance (COP) of solar adsorption refrigeration. In the literature, simulation models to predict the thermal behaviour and the coefficient of performance ...This paper deals with the evaluation of the Coefficient of Performance (COP) of solar adsorption refrigeration. In the literature, simulation models to predict the thermal behaviour and the coefficient of performance of these systems are uncommon. This is why we suggest a model to simulate the operation of the machine in a typical hot and dry climate of the city of Ouagadougou. The objective is to provide a model for calculating the COP from the measurement of the ambient temperature and the irradiation of a given site. Starting from mathematical modelling, a resolution and simulation were made with COMSOL software based on the Dubinin-Astakhov adsorption model, the heat transfer balance equations, and the Linear Driving Force (LDF) model to describe the thermal behaviour of the system. A one-week measurement sequence on the adsorption solar refrigerator at the Albert Schweitzer Ecological Centre (CEAS) validated the numerical results. The measurement shows that for the days with high sunshine, the temperature of the reaction medium reaches 110°C, and the pressure reaches 500 mbar. This leads to a production of cold that allows it to reach the temperature of -5°C at the evaporator. Under these conditions, the COP is worth 14%. These results are obtained both by numerical simulation using the COMSOL 5.1 software and after a measurement session on the solar refrigerator available to the CEAS. We obtained an experimental and theoretical coefficient of performance varying between 9% and 14% with a difference of between 0% and 3%. We conclude that our model is suitable to estimate the COP of any device based on its thermal properties, the ambient temperature and the irradiation of a given site.展开更多
To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is car...To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is carried out experimentally.It is found that there is a top value of the coefficient of performance(COP)when the system runs at 95 Hz of frequency.The relationships between the COP and compressor frequency,condensation pressure,evaporation pressure,condensation water temperature rise,and discharge temperature are discussed and analyzed at 95 Hz.And the COP of the HFC125 transcritical cycle is also compared with that of a R410 subcritical heat pump under the same conditions.The results indicate that there exists an optimum frequency for a better COP,and the system COP shows an increasing tendency with the decrease in condensation pressure and compressor ratio while the evaporation pressure remains invariant,and the COP decreases rapidly when cooling water temperature rises over 47.5 ℃.Compared with the R410A sub-critical cycle,the COP of HFC125 transcritical cycle significantly increases by 12% on average.展开更多
Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running...Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running in high efficiency. A mathematical model determining COP, evaporation temperature and condensation temperature of a single unit was proposed. Under the condition of uniform load distribution, the model was established according to different ways of bearing partial load with the same type multi...展开更多
The experimental performance of small-sized ground-coupled heat pump (GCHP) is researched intensively. However, there are little data documenting the operation performance of existing large-sized GCHP system. We prese...The experimental performance of small-sized ground-coupled heat pump (GCHP) is researched intensively. However, there are little data documenting the operation performance of existing large-sized GCHP system. We presented the actual performance measurement of a GCHP installed for apartment buildings in Wuhan, Hubei province, P. R. China. The system was constructed with a closed vertical typed ground heat exchanger with a total pipe length of 32 000 m. During one year, various operating parameters were monitored, including the outdoor temperature, the flow rate, the electrical consumption, and the water temperature. The seasonal coefficients of performances of the heat pumps and the system based on the measured data were found to be 4.01 and 2.96 in the cooling season, and 3.54 and 2.86 in the heating season, respectively. The GCHP system was more economical than the air-source room air conditioner in the energy efficiency which was increased by 29% in cooling mode and 50% in heating mode. There was an obvious heat imbalance of soil between the injection rate and the extraction rate in the residential GCHP system operation.展开更多
The main fan diffuser in a coal mine is an energy-recycling equipment with a dynamic energy loss for the main fan. Engineering practices and related researches show that the body structures of three types of diffusers...The main fan diffuser in a coal mine is an energy-recycling equipment with a dynamic energy loss for the main fan. Engineering practices and related researches show that the body structures of three types of diffusers are irrational. To solve the problem, an energy-saving diffuser is designed on the basis of the velocity potential theory. Under conditions of inlet velocity from 7 m/s to 32 m/s, 7 condition experiments using the energy-saving diffuser of 2.31 AER (area-enlarging ratio) and 5 condi- tion experiments using the energy-saving diffuser of 2.00 AER were conducted. Through a comparative analysis of the experi- ments, the results show that the COP (coefficient of performance) of the energy-saving diffuser of 2.31 AER is better than that of the energy-saving diffuser of 2.00 AER.展开更多
This paper is based on long term parameter measurements of the exhaust air heat pumps (EAHP) system in a new built apartment building. The building was equipped with an exhaust air ventilation system and exhaust air h...This paper is based on long term parameter measurements of the exhaust air heat pumps (EAHP) system in a new built apartment building. The building was equipped with an exhaust air ventilation system and exhaust air heat pump for ventilation heat recover. The results of the measurements show that the COP of the EAHP is mainly related to the temperature graph of the heating system and the supply temperature of domestic hot water (DWH). During the measurement period some other impact factors, such as the quality of maintenance, the nighttime temperature graph of the heating system, the reduction of the exhaust air flows in case of low temperatures, mistakes in designing and low building quality, have also played a role. An analysis of energy consumption shows that in winter conditions the COP is about 3.0 and in the transition period about 3.3. The energy recovery value of the EAHP is 0.5.展开更多
The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, express...The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.展开更多
Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 ...Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 to 333 K and shows good potential in the adsorption chiller in terms of the high cooling output. A double-effect adsorption chiller could provide a higher Coefficient Of Performance (COP) than that of a single-effect chiller. In this paper, we developed a measuring method for the amount of adsorption in the first and second adsorber in a double-effect adsorption chiller and measured the adsorption and desorption rate based on the volumetric method. We calculated the COP of the adsorption chiller with the quantity of adsorbent obtained in the experiment. In the experiments, the quantity of adsorbent in the first adsorber was 0.14 g-H<sub>2</sub>O/g-Ads at the pressure 20 kPa and a desorption temperature over 100℃. The amount of adsorbent in the second adsorber was equal to that of the first adsorber. By analyzing the COP with the experimental results, the COP value was calculated to be over 1.0 (–) at any desorption temperature. The COP of the double-effect cycle was higher than that of single-effect cycle.展开更多
文摘We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the practicality from the experimental results. The reactor module employed was an aluminum plate-tube heat exchanger with corrugated fins, and the CaCl<sub>2</sub> powder was in the form of a packed bed. Heat storage operation and heat dissipation operation are performed at the same time and supplied to the heat demand destination. At this time, an environmental heat source can be used during the heat radiation operation, and the heat output can release more heat than the heat input during heat storage. The heat discharging and charging characteristics of the reactor module were evaluated experimentally. The coefficient of performance (COP) was calculated for the heat upgrading cycle, and the heat output in the system was determined. A COP of 1.42 and output of 650 W/L, based on the heat exchanger volume, were obtained using a 600 s change time for the heat pump.
基金The National Natural Science Foundation of China(No.51176029)
文摘In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10765004 and 11065008)
文摘Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and the coefficient of performance are plotted by numerical calculation. It is shown that the maximum cooling rate of the thermoelectric refrigerator with two resonances increases but the maximum coefficient of performance decreases compared with those with one resonance. No matter which resonance mechanism is used (kx or kr filtered), the cooling rate and the performance coefficient of the kr filtered refrigerator are much better than those of the kx filtered one.
基金Project supported by the National Basic Research Program of China (Grant Nos G2001039302 and 2007CB307001)the Natural Science Foundation of Guangdong Province (Grant No 2003A1030405)the Natural Science Foundation of Guangzhou City,China (Grant No 1999-Z035-01)
文摘In this paper, the theoretical analysis and simulating calculation were conducted for a basic two-stage semiconductor thermoelectric module, which contains one thermocouple in the second stage and several thermocouples in the first stage. The study focused on the configuration of the two-stage semiconductor thermoelectric cooler, especially investigating the influences of some parameters, such as the current I1 of the first stage, the area A1 of every thermocouple and the number n of thermocouples in the first stage, on the cooling performance of the module. The obtained results of analysis indicate that changing the current I1 of the first stage, the area A1 of thermocouples and the number n of thermocouples in the first stage can improve the cooling performance of the module. These results can be used to optimize the configuration of the two-stage semiconductor thermoelectric module and provide guides for the design and application of thermoelectric cooler.
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
基金Supported by Major State Basic Research Development Program of China ("973" Program, No. 2009CB219907)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0936)
文摘Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water when the low temperature was 20 ℃. The following results were obtained: the highest temperature at the condenser outlet reached about 85 ℃; when the difference between the water temperatures at the condenser outlet and the evaporator inlet was less than 40 ℃, the coefficient of performance (COP) was larger than 4; when the difference reached 55 ℃, the COP still kept 3; the discharge temperature of BY-3 was lower than 100 ℃, and the refrigerant vapor pressure kept lower than 1.8 MPa. When the water temperature at the condenser outlet reached over 85 ℃, nearly a 5 ℃ superheating temperature was maintained.
文摘In the present study,an attempt ismade to enhance the performance of heat pump by utilizing two types of nanofluids namely,copper and alumina nanofluids.These nanofluids were employed around the evaporator coil of the heat pump.The nanofluids were used to enhance the heat input to the system by means of providing an external jacket around the evaporator coil.Both the nanofluids were prepared in three volume fractions 1%,2%and 5%.Water was chosen as the base fluid.The performance of the heat pump was assessed by calculating the coefficient of performance of the system when it was operated with and without nanofluid jacket.A significant enhancement in the coefficient of performance was noticed when copper and alumina nanofluids were employed in the system.Also,the coefficient of performance was found to have a direct relationship with the tested volume fractions.For the highest volume fraction of 5%,the performance of the heat pump was found to enhance by 23%with alumina nanofluid,while for copper nanofluid,a very significant enhancement in performance by 72%was observed.Thus,utilizing of nanofluids in heat pumps can be very beneficial towards performance enhancement and the idea can also be extended to other thermal systems such as steam power plant,automobile radiator,industrial heat exchangers and refrigeration systems.
文摘Cooling in industrial production and refrigeration of perishable and</span><span style="font-size:10.0pt;font-family:""> non-</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">perishable products is common practice throughout the world. Research studies have been conducted both experimentally and numerically to simulate Vapor Compression Refrigeration System (VCRS) and its performance respectively, however, experimental procedure often seems to be expensive and time-consuming to carry out due to the function of many variables. This study was therefore designed to numerically simulate the performance assessment of a nanoparticle enhanced VCRS. A numerical model of a vapor compression refrigeration system was developed using standard refrigeration equations on each of the major components of the refrigeration system such as compressor, evaporator, condenser and expansion valve. The model was then simulated on a MATLAB platform with a CoolProp installed packages via Python under two different simulation cases. In the first case, the mass fractions were varied for CuO,</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanoparticles while their densities remained constant and a reversed condition was investigated for the second case. The results showed that both the refrigerating effect and the Coefficient Of Performance (COP) of the system increase as both the mass fraction and density of all the nanoparticles increases. It also shows that the compressor work decreases as both the mass fraction and density of all the nanoparticles were increased. On comparing the computational and numerical analysis results, the study established no significant difference in terms of COP and the use of nanoparticles were found to have improved the COP of the system.
文摘In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.
基金National Natural Science Foundation ofChina(No.5 0 2 760 63 )
文摘With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal hydride selection model.The experimental results show that the refigeration cycle of the selected couple is good in the performance.The recovered waste heat and refrigeration power from exhaust gas of several kinds of automobile are calculated by waste-heat formula,coefficient R Q and COP.Refrigeration cycle of the new couple can satisfy the air-conditioning requirement of truck and car and is not enough in passenger car,according to the respective cooling load.
基金Supported by the Key Technology R&D Program of Tianjin,China(No.11ZCKFGX21100)Tianjin New Coastal District "Ten Campaign" Major Science and Technology Project(No.2010-BK140009 and 2010-BK140002)+1 种基金National Basic Research Program of China("973" Program,No.2009CB219900)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0936)
文摘A refrigerant mixture TJR02 was developed and the comparison experiment was performed on a singlestage vapor compression refrigeration system originally designed for R22.Experimental results show that TJR02 can be directly used in the system without modifying the original system or changing lubricant.By replacing R22 with TJR02,cooling rate gets faster and at least 20% of energy is saved.The actual detection in the standard test-bed verifies the experimental results and indicates that the adoption of TJR02 leads to greater efficiency and wider application.And the lower the refrigeratory temperature is,the more obvious the energy saving effects will be.
文摘The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order to predict the behaviors of the adsorption chiller system and find the influence of working conditions on its operation. For the working process of the main components of the system, including adsorber, condenser and evaporator, the coupled unsteady equations were set up for each stage. The model was then solved using stable numerical methods from EES (equation engineering solver), and the performance of the adsorber and condenser/evaporator of the system was analyzed. The condensation, evaporation and adsorber temperature values as well as the adsorption ratio and desorption ratio were obtained as function of operating time. Also, the coefficient of performance was analyzed in function of the heat source temperature and the cooling source temperature.
文摘This paper deals with the evaluation of the Coefficient of Performance (COP) of solar adsorption refrigeration. In the literature, simulation models to predict the thermal behaviour and the coefficient of performance of these systems are uncommon. This is why we suggest a model to simulate the operation of the machine in a typical hot and dry climate of the city of Ouagadougou. The objective is to provide a model for calculating the COP from the measurement of the ambient temperature and the irradiation of a given site. Starting from mathematical modelling, a resolution and simulation were made with COMSOL software based on the Dubinin-Astakhov adsorption model, the heat transfer balance equations, and the Linear Driving Force (LDF) model to describe the thermal behaviour of the system. A one-week measurement sequence on the adsorption solar refrigerator at the Albert Schweitzer Ecological Centre (CEAS) validated the numerical results. The measurement shows that for the days with high sunshine, the temperature of the reaction medium reaches 110°C, and the pressure reaches 500 mbar. This leads to a production of cold that allows it to reach the temperature of -5°C at the evaporator. Under these conditions, the COP is worth 14%. These results are obtained both by numerical simulation using the COMSOL 5.1 software and after a measurement session on the solar refrigerator available to the CEAS. We obtained an experimental and theoretical coefficient of performance varying between 9% and 14% with a difference of between 0% and 3%. We conclude that our model is suitable to estimate the COP of any device based on its thermal properties, the ambient temperature and the irradiation of a given site.
基金The National Natural Science Foundation of China(No.50676059)
文摘To evaluate the performance of heat pumps using refrigerant HFC125,an experimental rig of a DC-inverter heat pump water heater is designed and set up,and the research on the transcritical heat pump water heater is carried out experimentally.It is found that there is a top value of the coefficient of performance(COP)when the system runs at 95 Hz of frequency.The relationships between the COP and compressor frequency,condensation pressure,evaporation pressure,condensation water temperature rise,and discharge temperature are discussed and analyzed at 95 Hz.And the COP of the HFC125 transcritical cycle is also compared with that of a R410 subcritical heat pump under the same conditions.The results indicate that there exists an optimum frequency for a better COP,and the system COP shows an increasing tendency with the decrease in condensation pressure and compressor ratio while the evaporation pressure remains invariant,and the COP decreases rapidly when cooling water temperature rises over 47.5 ℃.Compared with the R410A sub-critical cycle,the COP of HFC125 transcritical cycle significantly increases by 12% on average.
基金Supported by National Natural Science Foundation of China (No. 50578048)"Heating, Gas, Ventilation and Air Conditioning" Key Laboratory Open Subject in Beijing (No. KF200710)the Postdoctoral Researcher Science Foundation of China (No. 20090450986)
文摘Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running in high efficiency. A mathematical model determining COP, evaporation temperature and condensation temperature of a single unit was proposed. Under the condition of uniform load distribution, the model was established according to different ways of bearing partial load with the same type multi...
基金Funded by National Natural Science Foundation of China (Grant No. 51078160)
文摘The experimental performance of small-sized ground-coupled heat pump (GCHP) is researched intensively. However, there are little data documenting the operation performance of existing large-sized GCHP system. We presented the actual performance measurement of a GCHP installed for apartment buildings in Wuhan, Hubei province, P. R. China. The system was constructed with a closed vertical typed ground heat exchanger with a total pipe length of 32 000 m. During one year, various operating parameters were monitored, including the outdoor temperature, the flow rate, the electrical consumption, and the water temperature. The seasonal coefficients of performances of the heat pumps and the system based on the measured data were found to be 4.01 and 2.96 in the cooling season, and 3.54 and 2.86 in the heating season, respectively. The GCHP system was more economical than the air-source room air conditioner in the energy efficiency which was increased by 29% in cooling mode and 50% in heating mode. There was an obvious heat imbalance of soil between the injection rate and the extraction rate in the residential GCHP system operation.
文摘The main fan diffuser in a coal mine is an energy-recycling equipment with a dynamic energy loss for the main fan. Engineering practices and related researches show that the body structures of three types of diffusers are irrational. To solve the problem, an energy-saving diffuser is designed on the basis of the velocity potential theory. Under conditions of inlet velocity from 7 m/s to 32 m/s, 7 condition experiments using the energy-saving diffuser of 2.31 AER (area-enlarging ratio) and 5 condi- tion experiments using the energy-saving diffuser of 2.00 AER were conducted. Through a comparative analysis of the experi- ments, the results show that the COP (coefficient of performance) of the energy-saving diffuser of 2.31 AER is better than that of the energy-saving diffuser of 2.00 AER.
文摘This paper is based on long term parameter measurements of the exhaust air heat pumps (EAHP) system in a new built apartment building. The building was equipped with an exhaust air ventilation system and exhaust air heat pump for ventilation heat recover. The results of the measurements show that the COP of the EAHP is mainly related to the temperature graph of the heating system and the supply temperature of domestic hot water (DWH). During the measurement period some other impact factors, such as the quality of maintenance, the nighttime temperature graph of the heating system, the reduction of the exhaust air flows in case of low temperatures, mistakes in designing and low building quality, have also played a role. An analysis of energy consumption shows that in winter conditions the COP is about 3.0 and in the transition period about 3.3. The energy recovery value of the EAHP is 0.5.
文摘The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.
文摘Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 to 333 K and shows good potential in the adsorption chiller in terms of the high cooling output. A double-effect adsorption chiller could provide a higher Coefficient Of Performance (COP) than that of a single-effect chiller. In this paper, we developed a measuring method for the amount of adsorption in the first and second adsorber in a double-effect adsorption chiller and measured the adsorption and desorption rate based on the volumetric method. We calculated the COP of the adsorption chiller with the quantity of adsorbent obtained in the experiment. In the experiments, the quantity of adsorbent in the first adsorber was 0.14 g-H<sub>2</sub>O/g-Ads at the pressure 20 kPa and a desorption temperature over 100℃. The amount of adsorbent in the second adsorber was equal to that of the first adsorber. By analyzing the COP with the experimental results, the COP value was calculated to be over 1.0 (–) at any desorption temperature. The COP of the double-effect cycle was higher than that of single-effect cycle.