Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying...Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.展开更多
In this paper,a preliminary study is given on the drag (i.e.bulk transfer for momentum) coefficient,on the basis of data from four sets of AWS in Tibet during the first observational year from July 1993 to July 1994 a...In this paper,a preliminary study is given on the drag (i.e.bulk transfer for momentum) coefficient,on the basis of data from four sets of AWS in Tibet during the first observational year from July 1993 to July 1994 according to China Japan Asian Monsoon Cooperative Research Program.The results show that the drag coefficient over the Tibetan Plateau is 3.3 to 4.4×103.In addition,monthly and diurnal variations of drag coefficient and the relationship among the drag coefficients and the bulk Richardson number,surface roughness length and wind speed at 10 m height are discussed in detail.展开更多
The settlement of particles is of great importance in many areas. The accurate determination of drag coefficient and settling velocity in wide Reynolds number (Re) range remains a problem. In this paper, a series of...The settlement of particles is of great importance in many areas. The accurate determination of drag coefficient and settling velocity in wide Reynolds number (Re) range remains a problem. In this paper, a series of new formulas for drag coefficient of spherical particles based on theoretical laws, such as the Stokes law, the Oseen law, and the Goldstein law, were developed and fitted using 480 groups of experimental data (Re 〈 2 × 10^5). The results show that the 2nd approximation of a rational function containing only one parameter can describe Co-Re relationship accurately over the whole Re range of 0-2× 10^5. The new developed formulas containing five parameters show higher goodness over wide Re range than presently existing equations. The introduction of the Oseen law is helpful for improving the fitting goodness of the empirical formulas. On the basis of one of the Oseen-based Co-Re formulas giving the lowest sum of squared relative errors Qover the whole Re range (Re 〈 2 × 10^5), a general formula for settling velocity ut based on dimensionless parameters was proposed showing high goodness.展开更多
A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness upda...A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness updating technique was developed using the Kalman filter method to update Manning's roughness coefficient at each time step of the calculation processes. Channel shapes were simplified as rectangles, triangles, and parabolas, and the relationships between hydraulic radius and water depth were developed for plain rivers. Based on the relationship between the Froude number and the inertia terms of the momentum equation in the Saint-Venant equations, the relationship between Manning's roughness coefficient and water depth was obtained. Using the channel of the Huaihe River from Wangjiaba to Lutaizi stations as a case, to test the performance and rationality of the present flood routing model, the original hydraulic model was compared with the developed model. Results show that the stage hydrographs calculated by the developed flood routing model with the updated Manning's roughness coefficient have a good agreement with the observed stage hydrographs. This model performs better than the original hydraulic model.展开更多
This article numerically investigates the 2D, steady, laminar, incompressible fluid flow, mass and heat transfer of a non-Newtonian fluid model induced by stretching surface. A Casson fluid model is considered to stud...This article numerically investigates the 2D, steady, laminar, incompressible fluid flow, mass and heat transfer of a non-Newtonian fluid model induced by stretching surface. A Casson fluid model is considered to study the non-Newtonian behavior of the flowing fluid. The magnetic field and a porous medium are considered in the flow momentum, whereas the viscous dissipation is also taken into account in the energy transport phenomena. To see the fluid concentration, the concentration equation is used. Furthermore, the Nusselt number coefficient and skin friction are modified with the addition of nonlinear stretching and radiation parameters. With the similarity transformation, the nonlinear governing partial differential equations are transformed into a system of ordinary differential equations and then numerically solved using a fourth-order Runge-Kutta scheme with the shooting method. The relevant parameters of interest are interpreted for graphical results. The results illustrate that the fluid energy increases effectively with an increase in the Eckert number, radiation parameter, and heat source parameter, while it decreases by increasing the Prandtl number and heat sink parameter. Both the wall skin friction and the wall Nusselt number coefficient decelerate with an increase in the Casson parameter.展开更多
The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such pa...The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such particles, there are few results for cuboids. This paper presents data for cuboids with a square base in static glycerin-water solutions of various volume concentrations. Complex motions were observed and characterized. A dimensionless expression is given for terminal velocity ut as a function of Archimedes number Ar which is used to develop an accurate correlation for friction factor CD. The accuracy of the correlation is 7.9% compared to experimental data in the literature. For both square plates and square rods, the terminal velocity per unit mass, ut/mp, was used to characterize the influence of narticle geometry on velocity, which was shown to be linear.展开更多
基金Supported by the National Natural Science Foundation of China(51276017)
文摘Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.
文摘In this paper,a preliminary study is given on the drag (i.e.bulk transfer for momentum) coefficient,on the basis of data from four sets of AWS in Tibet during the first observational year from July 1993 to July 1994 according to China Japan Asian Monsoon Cooperative Research Program.The results show that the drag coefficient over the Tibetan Plateau is 3.3 to 4.4×103.In addition,monthly and diurnal variations of drag coefficient and the relationship among the drag coefficients and the bulk Richardson number,surface roughness length and wind speed at 10 m height are discussed in detail.
基金financial support of the Natural Science Foundation of China (NSFC,No.50974094)
文摘The settlement of particles is of great importance in many areas. The accurate determination of drag coefficient and settling velocity in wide Reynolds number (Re) range remains a problem. In this paper, a series of new formulas for drag coefficient of spherical particles based on theoretical laws, such as the Stokes law, the Oseen law, and the Goldstein law, were developed and fitted using 480 groups of experimental data (Re 〈 2 × 10^5). The results show that the 2nd approximation of a rational function containing only one parameter can describe Co-Re relationship accurately over the whole Re range of 0-2× 10^5. The new developed formulas containing five parameters show higher goodness over wide Re range than presently existing equations. The introduction of the Oseen law is helpful for improving the fitting goodness of the empirical formulas. On the basis of one of the Oseen-based Co-Re formulas giving the lowest sum of squared relative errors Qover the whole Re range (Re 〈 2 × 10^5), a general formula for settling velocity ut based on dimensionless parameters was proposed showing high goodness.
基金supported by the Special Fund for Public Welfare (Meteorology) of China (Grants No. GYHY201006037 and GYHY200906007)
文摘A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness updating technique was developed using the Kalman filter method to update Manning's roughness coefficient at each time step of the calculation processes. Channel shapes were simplified as rectangles, triangles, and parabolas, and the relationships between hydraulic radius and water depth were developed for plain rivers. Based on the relationship between the Froude number and the inertia terms of the momentum equation in the Saint-Venant equations, the relationship between Manning's roughness coefficient and water depth was obtained. Using the channel of the Huaihe River from Wangjiaba to Lutaizi stations as a case, to test the performance and rationality of the present flood routing model, the original hydraulic model was compared with the developed model. Results show that the stage hydrographs calculated by the developed flood routing model with the updated Manning's roughness coefficient have a good agreement with the observed stage hydrographs. This model performs better than the original hydraulic model.
文摘This article numerically investigates the 2D, steady, laminar, incompressible fluid flow, mass and heat transfer of a non-Newtonian fluid model induced by stretching surface. A Casson fluid model is considered to study the non-Newtonian behavior of the flowing fluid. The magnetic field and a porous medium are considered in the flow momentum, whereas the viscous dissipation is also taken into account in the energy transport phenomena. To see the fluid concentration, the concentration equation is used. Furthermore, the Nusselt number coefficient and skin friction are modified with the addition of nonlinear stretching and radiation parameters. With the similarity transformation, the nonlinear governing partial differential equations are transformed into a system of ordinary differential equations and then numerically solved using a fourth-order Runge-Kutta scheme with the shooting method. The relevant parameters of interest are interpreted for graphical results. The results illustrate that the fluid energy increases effectively with an increase in the Eckert number, radiation parameter, and heat source parameter, while it decreases by increasing the Prandtl number and heat sink parameter. Both the wall skin friction and the wall Nusselt number coefficient decelerate with an increase in the Casson parameter.
基金supported by the Major Program of the National Natural Science Foundation of China with Grant No. 10632070
文摘The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such particles, there are few results for cuboids. This paper presents data for cuboids with a square base in static glycerin-water solutions of various volume concentrations. Complex motions were observed and characterized. A dimensionless expression is given for terminal velocity ut as a function of Archimedes number Ar which is used to develop an accurate correlation for friction factor CD. The accuracy of the correlation is 7.9% compared to experimental data in the literature. For both square plates and square rods, the terminal velocity per unit mass, ut/mp, was used to characterize the influence of narticle geometry on velocity, which was shown to be linear.