Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison s...Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison study of these characteristics with the involute gear drive is also carried out. The influences of design parameters including the number of teeth and the pressure angle on the contact and bending stresses are studied. The following conclusions are achieved: the contact ratio of the cosine gear drive is about 1.2 to 1.3, which is reduced by about 20% in comparison with that of the involute gear drive. The sliding coefficient of the cosine gear drive is smaller than that of the involute gear drive. The contact and bending stresses of the cosine gear drive are lower than those of the involute gear drive. The contact and bending stresses decrease with the growth of the number of teeth and the pressure angle.展开更多
基金National Natural Science Foundation of China(No.50575071)Natural Science Foundation of Hunan Province,China(No.06JJl0008)+1 种基金S&T Programs of Hunan Province,China(No.2007FJ4047)Program for New Century Excellent Talents in University,China.
文摘Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison study of these characteristics with the involute gear drive is also carried out. The influences of design parameters including the number of teeth and the pressure angle on the contact and bending stresses are studied. The following conclusions are achieved: the contact ratio of the cosine gear drive is about 1.2 to 1.3, which is reduced by about 20% in comparison with that of the involute gear drive. The sliding coefficient of the cosine gear drive is smaller than that of the involute gear drive. The contact and bending stresses of the cosine gear drive are lower than those of the involute gear drive. The contact and bending stresses decrease with the growth of the number of teeth and the pressure angle.