Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen...Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement.展开更多
In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including eva...In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including evaluating indicators, effects of operating factors, effect of particle uniformity on the flotation and formation mechanism of particle uniformity. Experiment of HPGR finished grinding system, cationic reverse flotation experiment and simulation test of particle bed comminution under the condition of quasi-static were carried out. Theoretical analyses indicated that both of uniformity coefficient and average particle size should be included in the uniformity analysis of the mineral particles. The results show that the effect of circulation fan impeller speed on particle uniformity is the most evident, HPGR working pressure and roll gap are second and HPGR roller speed is the last. Average particle size has a more obvious effect on the grade of flotation concentrate while uniformity coefficient has a more obvious effect on the flotation recovery. Considering the two aspects of grade and recovery, the optimal uniformity coefficient for flotation is 1.1-1.2 and the optimal average particle size for flotation is 50-55 μm. The operating factors which promote the shielding effect and compact effect in the HPGR finished grinding system should be strengthened based on the uniformity of particles.展开更多
This study takes a fractured rock mass in the Datengxia Hydropower Station,China as an example to analyze the size effects and determine the representative elementary sizes.A novel method considering geometric paramet...This study takes a fractured rock mass in the Datengxia Hydropower Station,China as an example to analyze the size effects and determine the representative elementary sizes.A novel method considering geometric parameter distributions is proposed in this work.The proposed method can quickly and simply determine the size effects and representative elementary sizes.Specifically,geometric parameter distributions,including fracture frequency,size and orientation,are generated on the basis of the Bernoulli trial and Monte Carlo simulation.The distributions are assessed using the coefficient of variation(CV),and the acceptable variations for CV(5%,10%and 20%)are used to determine representative elementary sizes.Generally,the representative element of rock masses is the representative elementary volume(REV).The present study extends the representative element to other dimensions,i.e.representative elementary length(REL)and representative elementary area(REA)for one and two dimensions,respectively.REL and REA are useful in studying the size effects of one-(1D)and twodimensional(2D)characteristics of rock masses.The relationships among multi-dimensional representative elementary sizes are established.The representative elementary sizes reduce with the increase in the dimensions,and REA and REV can be deduced by REL.Therefore,the proposed method can quickly and simply determine REL and further estimate REA and REV,which considerably improves the efficiency of rock mass analysis.展开更多
Settling characteristics of floes, including relative settling velocity, relative flocculation coefficient and flocculation exponent, are obtained by the suspended load equations for different size fractions. Data of ...Settling characteristics of floes, including relative settling velocity, relative flocculation coefficient and flocculation exponent, are obtained by the suspended load equations for different size fractions. Data of the Changjiang Estuary suggest that level of flocculation changes from river section, river mouth (turbidity maximum) to offshore area in sequence of low, very high and high. The settling characteristics of floes reflected by in situ estimation performs a similar feature as that obtained from still water experiment.展开更多
Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental resu...Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental results show that the thermal conductivity coefficients of aluminum foams prepared by two different infiltration methods have similar increasing trend with the increase of particle size;along with the reducing porosity,the thermal conductivity coefficients will be enhanced oppositely.However,with the same particle size,the open-celled aluminum foam prepared by the former method has a higher thermal conductivity coefficient obviously.It is largely because that the sample prepared by counter-gravity infiltration casting has a lower void content and better dense crystallization of metal-matrix after the constant pressure process.展开更多
The additives-doped α-nickel hydroxides were prepared by supersonic co-precipitation method. The crystal structure and grain size of the prepared samples were characterized by X-ray diffraction (XRD) and Particle s...The additives-doped α-nickel hydroxides were prepared by supersonic co-precipitation method. The crystal structure and grain size of the prepared samples were characterized by X-ray diffraction (XRD) and Particle size distribution (PSD), respectively. Cyclic voltammetry (CV) tests show that Al-Co-Y doped Ni(OH)2 has better reaction reversibility, higher proton diffusion coefficient than those of Al-Co doped Ni(OH)2. Al-Co-Y doped Ni(OH)2 also has lower charge-transfer resistance as shown by electrochemical impedance spectroscopy (EIS). Charge/discharge tests show that the discharge capacity of Al-Co-Y doped Ni(OH)2 reaches 328 mAh/g at 0.2 C and 306 mAh/g at 0.5 C, while Al-Co doped Ni(OH)2 can only discharge a capacity of 308 mAh/g at 0.2 C and 267 mAh/g at 0.5 C.展开更多
The even degree of animal population is generlay measured by the coefficient of variation of major economic characters.Facing the coefficient of variation,a statistic with complex properties,we achieved indirectly the...The even degree of animal population is generlay measured by the coefficient of variation of major economic characters.Facing the coefficient of variation,a statistic with complex properties,we achieved indirectly the determination of confidence interval for even degree of an animal population by analysing the reciprocal of the statistic.The sample size which is suitable to the determination of the even degree of an animal population was probed into within the extent of permissive estimation error.展开更多
Lithium carbonate (Li_(2)CO_(3)) was synthesised by adding sodium (Na) and magnesium (Mg) ions into a lithium chloride solution at different concentrations,followed by the addition of an appropriate sodium carbonate s...Lithium carbonate (Li_(2)CO_(3)) was synthesised by adding sodium (Na) and magnesium (Mg) ions into a lithium chloride solution at different concentrations,followed by the addition of an appropriate sodium carbonate solution.Then,the morphology,purity and particle size of Li_(2)CO_(3) crystals were investigated.The Na and Mg ions had negligible and remarkable effects,respectively,on the product purity;however they both greatly influenced its morphology.Their effects on the nucleation and growth rates,the radial distribution function and the diffusion behaviour of the synthesised Li_(2)CO_(3) were investigated via molecular dynamics methods;the Na ions slowed down the crystal nucleation and growth rates,while the Mg ions accelerated them.Moreover,the Mg ions rendered the system short-range ordered and long-range disordered and also increased the diffusion coefficient.The results of this study showed that Mg ions are one of the most important factors influencing the purity and yield of Li_(2)CO_(3).展开更多
Scattering of the shear waves by a nano-sized cylindrical hole embedded the inhomogeneous is investigated in this study. The Helmholtz equation with a variable coefficient is transformed the standard Helmholtz equatio...Scattering of the shear waves by a nano-sized cylindrical hole embedded the inhomogeneous is investigated in this study. The Helmholtz equation with a variable coefficient is transformed the standard Helmholtz equation by the complex function method and the conformal mapping method. By wave function expanding method, the analytical expressions of the displacement field and stress field in the inhomogeneous medium are obtained. Considering the surface effect and using the generalized Young-Laplace equation, we obtain the boundary conditions at nano arbitrary-shaped hole, then the field equations satisfying boundary conditions are attributed to solving a set of infinite algebraic equations. Numerical results show that when the radius of the cylindrical cavity shrinks to nanometers, surface energy becomes a dominant factor that affects the dynamic stress concentration factor (DSCF) around the cylindrical cavity. The influence the density variation of the inhomogeneity on the DSCF is discussed at the same time.展开更多
In this study,we applied the variational model to fluidization of small spherical particles.Fluidization experiments were carried out for spherical particles with 13 diameters between dp=0.13 and 5.00 mm.We propose a ...In this study,we applied the variational model to fluidization of small spherical particles.Fluidization experiments were carried out for spherical particles with 13 diameters between dp=0.13 and 5.00 mm.We propose a generalized form of our variational model to predict the superficial velocity U and interphase drag coefficientβby introducing an exponent n to describe the different dependences of the drag force Fd on fluid velocity for different particle sizes(different flow regimes).By comparing the predictions with the experimental results,we conclude that n=1 should be used for small particles(dp<1 mm)and n=2 for larger particles(dp>1 mm).This conclusion is generalized by proposing n=1 for particles with Ret<160 and n=2 for particles with Ret>160.The average mean absolute error was 5.49%in calculating superficial velocity for different bed voidages using the modified variational model for all of the particles examined.The calculated values ofβwere compared with values of literature models for particles with dp<1.0 mm.The average mean absolute error of the modified variational model was 8.02%in calculatingβfor different bed voidages for all of the particles examined.展开更多
More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation beha...More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and p H all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.展开更多
Monitoring the sediment transport behavior induced by different interventions, particularly sand mining from rivers, is needed to adaptively manage the watersheds. The particle size distribution of the sus-pended sedi...Monitoring the sediment transport behavior induced by different interventions, particularly sand mining from rivers, is needed to adaptively manage the watersheds. The particle size distribution of the sus-pended sediment in up and downstream of rivers is one of the main indicators to know about fate of sediments, which may be varied in different conditions. We investigated the effect of some types of sand and gravel (i.e., manual and low, semi-heavy, and heavy machinery) mining on particle size distribution of suspended sediment in the Vaz-e-Owlya, Vaz-e-Sofla and Alesh-Roud riverine mines located in Ma-zandaran Province, northern Iran. The study was conducted on a monthly basis from February, 2012 to January, 2013. Laser granulometry was used to analyze the particle size distribution of suspended se-diment samples taken from up and downstream sections of the study mines. The results revealed that the level and intensity of mining activity affected particle size distribution of suspended sediments. Further statistical assessments in up and downstream sections of the mines proved that sorting, D50, mean, D90, kurtosis, skewness and D10 of the suspended sediment were not significantly influenced by mining activities at levels of 0.09, 0.11, 0.12, 0.15 to 0.69, 0.15–0.69, 0.77, 0.87, 0.97, respectively. While it was not statistically significant, we found that the type of mine and the level of the exploitation changed the particle size distribution of the suspended sediment.展开更多
基金supported by the Major National Science and Technology Project(No.2016ZX05054011)。
文摘Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement.
基金Project(2013EG132088)supported by Special Program for Research Institutes of the Ministry of Science and Technology,ChinaProject(12010402c187)supported by Key Science and Technology Program of Anhui Province,China
文摘In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including evaluating indicators, effects of operating factors, effect of particle uniformity on the flotation and formation mechanism of particle uniformity. Experiment of HPGR finished grinding system, cationic reverse flotation experiment and simulation test of particle bed comminution under the condition of quasi-static were carried out. Theoretical analyses indicated that both of uniformity coefficient and average particle size should be included in the uniformity analysis of the mineral particles. The results show that the effect of circulation fan impeller speed on particle uniformity is the most evident, HPGR working pressure and roll gap are second and HPGR roller speed is the last. Average particle size has a more obvious effect on the grade of flotation concentrate while uniformity coefficient has a more obvious effect on the flotation recovery. Considering the two aspects of grade and recovery, the optimal uniformity coefficient for flotation is 1.1-1.2 and the optimal average particle size for flotation is 50-55 μm. The operating factors which promote the shielding effect and compact effect in the HPGR finished grinding system should be strengthened based on the uniformity of particles.
文摘This study takes a fractured rock mass in the Datengxia Hydropower Station,China as an example to analyze the size effects and determine the representative elementary sizes.A novel method considering geometric parameter distributions is proposed in this work.The proposed method can quickly and simply determine the size effects and representative elementary sizes.Specifically,geometric parameter distributions,including fracture frequency,size and orientation,are generated on the basis of the Bernoulli trial and Monte Carlo simulation.The distributions are assessed using the coefficient of variation(CV),and the acceptable variations for CV(5%,10%and 20%)are used to determine representative elementary sizes.Generally,the representative element of rock masses is the representative elementary volume(REV).The present study extends the representative element to other dimensions,i.e.representative elementary length(REL)and representative elementary area(REA)for one and two dimensions,respectively.REL and REA are useful in studying the size effects of one-(1D)and twodimensional(2D)characteristics of rock masses.The relationships among multi-dimensional representative elementary sizes are established.The representative elementary sizes reduce with the increase in the dimensions,and REA and REV can be deduced by REL.Therefore,the proposed method can quickly and simply determine REL and further estimate REA and REV,which considerably improves the efficiency of rock mass analysis.
文摘Settling characteristics of floes, including relative settling velocity, relative flocculation coefficient and flocculation exponent, are obtained by the suspended load equations for different size fractions. Data of the Changjiang Estuary suggest that level of flocculation changes from river section, river mouth (turbidity maximum) to offshore area in sequence of low, very high and high. The settling characteristics of floes reflected by in situ estimation performs a similar feature as that obtained from still water experiment.
基金Project(51304254) supported by the National Natural Science Foundation of ChinaProject(2013GK4064) supported by the Strategic Emerging Industry Program of the Ministry of Science and Technology of Hunan Province,China
文摘Contrastive research was carried out to study the thermal properties of open-celled aluminum foams prepared by counter-gravity infiltration casting system and the traditional process respectively.The experimental results show that the thermal conductivity coefficients of aluminum foams prepared by two different infiltration methods have similar increasing trend with the increase of particle size;along with the reducing porosity,the thermal conductivity coefficients will be enhanced oppositely.However,with the same particle size,the open-celled aluminum foam prepared by the former method has a higher thermal conductivity coefficient obviously.It is largely because that the sample prepared by counter-gravity infiltration casting has a lower void content and better dense crystallization of metal-matrix after the constant pressure process.
基金Funded by National Natural Science Foundation of China (No.10774030)Science and Technology Program of Guangzhou City of China (No.2008J1-C161)
文摘The additives-doped α-nickel hydroxides were prepared by supersonic co-precipitation method. The crystal structure and grain size of the prepared samples were characterized by X-ray diffraction (XRD) and Particle size distribution (PSD), respectively. Cyclic voltammetry (CV) tests show that Al-Co-Y doped Ni(OH)2 has better reaction reversibility, higher proton diffusion coefficient than those of Al-Co doped Ni(OH)2. Al-Co-Y doped Ni(OH)2 also has lower charge-transfer resistance as shown by electrochemical impedance spectroscopy (EIS). Charge/discharge tests show that the discharge capacity of Al-Co-Y doped Ni(OH)2 reaches 328 mAh/g at 0.2 C and 306 mAh/g at 0.5 C, while Al-Co doped Ni(OH)2 can only discharge a capacity of 308 mAh/g at 0.2 C and 267 mAh/g at 0.5 C.
文摘The even degree of animal population is generlay measured by the coefficient of variation of major economic characters.Facing the coefficient of variation,a statistic with complex properties,we achieved indirectly the determination of confidence interval for even degree of an animal population by analysing the reciprocal of the statistic.The sample size which is suitable to the determination of the even degree of an animal population was probed into within the extent of permissive estimation error.
基金Funded by the 2017 CAS“Light of West China”Program,Innovation Academy for Green Manufacture,CAS(No.IAGM2020C01)Key R&D and Transformation Projects in Qinghai Province(No.2019-GX-167)。
文摘Lithium carbonate (Li_(2)CO_(3)) was synthesised by adding sodium (Na) and magnesium (Mg) ions into a lithium chloride solution at different concentrations,followed by the addition of an appropriate sodium carbonate solution.Then,the morphology,purity and particle size of Li_(2)CO_(3) crystals were investigated.The Na and Mg ions had negligible and remarkable effects,respectively,on the product purity;however they both greatly influenced its morphology.Their effects on the nucleation and growth rates,the radial distribution function and the diffusion behaviour of the synthesised Li_(2)CO_(3) were investigated via molecular dynamics methods;the Na ions slowed down the crystal nucleation and growth rates,while the Mg ions accelerated them.Moreover,the Mg ions rendered the system short-range ordered and long-range disordered and also increased the diffusion coefficient.The results of this study showed that Mg ions are one of the most important factors influencing the purity and yield of Li_(2)CO_(3).
文摘Scattering of the shear waves by a nano-sized cylindrical hole embedded the inhomogeneous is investigated in this study. The Helmholtz equation with a variable coefficient is transformed the standard Helmholtz equation by the complex function method and the conformal mapping method. By wave function expanding method, the analytical expressions of the displacement field and stress field in the inhomogeneous medium are obtained. Considering the surface effect and using the generalized Young-Laplace equation, we obtain the boundary conditions at nano arbitrary-shaped hole, then the field equations satisfying boundary conditions are attributed to solving a set of infinite algebraic equations. Numerical results show that when the radius of the cylindrical cavity shrinks to nanometers, surface energy becomes a dominant factor that affects the dynamic stress concentration factor (DSCF) around the cylindrical cavity. The influence the density variation of the inhomogeneity on the DSCF is discussed at the same time.
基金This work was supported by the Serbian Ministry of Edu-cation,Science and Technological Development(grant number ON172022).
文摘In this study,we applied the variational model to fluidization of small spherical particles.Fluidization experiments were carried out for spherical particles with 13 diameters between dp=0.13 and 5.00 mm.We propose a generalized form of our variational model to predict the superficial velocity U and interphase drag coefficientβby introducing an exponent n to describe the different dependences of the drag force Fd on fluid velocity for different particle sizes(different flow regimes).By comparing the predictions with the experimental results,we conclude that n=1 should be used for small particles(dp<1 mm)and n=2 for larger particles(dp>1 mm).This conclusion is generalized by proposing n=1 for particles with Ret<160 and n=2 for particles with Ret>160.The average mean absolute error was 5.49%in calculating superficial velocity for different bed voidages using the modified variational model for all of the particles examined.The calculated values ofβwere compared with values of literature models for particles with dp<1.0 mm.The average mean absolute error of the modified variational model was 8.02%in calculatingβfor different bed voidages for all of the particles examined.
基金supported by the National Natural Science Foundation of China(Nos.51808530 and 51778604)。
文摘More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and p H all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.
基金The authors would like to thank Engs.S.Azizi and R.Alijani for their valuable accompany in field sampling and data collection.Additional thanks are extended to Eng.N.Ghasvari for his co-operation in laboratory services.This research has also been partly supported by the Iran National Science Foundation(Project no.10100012-12)whose valuable assistance is appreciated.
文摘Monitoring the sediment transport behavior induced by different interventions, particularly sand mining from rivers, is needed to adaptively manage the watersheds. The particle size distribution of the sus-pended sediment in up and downstream of rivers is one of the main indicators to know about fate of sediments, which may be varied in different conditions. We investigated the effect of some types of sand and gravel (i.e., manual and low, semi-heavy, and heavy machinery) mining on particle size distribution of suspended sediment in the Vaz-e-Owlya, Vaz-e-Sofla and Alesh-Roud riverine mines located in Ma-zandaran Province, northern Iran. The study was conducted on a monthly basis from February, 2012 to January, 2013. Laser granulometry was used to analyze the particle size distribution of suspended se-diment samples taken from up and downstream sections of the study mines. The results revealed that the level and intensity of mining activity affected particle size distribution of suspended sediments. Further statistical assessments in up and downstream sections of the mines proved that sorting, D50, mean, D90, kurtosis, skewness and D10 of the suspended sediment were not significantly influenced by mining activities at levels of 0.09, 0.11, 0.12, 0.15 to 0.69, 0.15–0.69, 0.77, 0.87, 0.97, respectively. While it was not statistically significant, we found that the type of mine and the level of the exploitation changed the particle size distribution of the suspended sediment.