This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool...This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool holders made from different materials,including Al 5083,Al 6082,Al 7012,and a standard 4140 material,were subjected to chatter vibration to investigate their process damping capabilities.The study found that the standard tool holder 4140 allows for higher stable depths of cut and produces similar process damping values compared to the other tool holders.Finite element analyses(FEA)were performed to verify the experimental results,and the modal and FEA analyses produced very similar results.The study concludes that future research should investigate the effects of tool holders made from high alloy steel alloys on process damping.Overall,this paper provides important insights into the effects of tool hold-er materials on chatter vibration and process damping in turning operations,which can help in the design of more effi-cient and effective cutting systems.展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were pe...The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.展开更多
Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for mil...Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.展开更多
基金This study was supported by the Scientific Research Coordination Unit of Pamukkale University under the project number 2011BSP020.
文摘This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool holders made from different materials,including Al 5083,Al 6082,Al 7012,and a standard 4140 material,were subjected to chatter vibration to investigate their process damping capabilities.The study found that the standard tool holder 4140 allows for higher stable depths of cut and produces similar process damping values compared to the other tool holders.Finite element analyses(FEA)were performed to verify the experimental results,and the modal and FEA analyses produced very similar results.The study concludes that future research should investigate the effects of tool holders made from high alloy steel alloys on process damping.Overall,this paper provides important insights into the effects of tool hold-er materials on chatter vibration and process damping in turning operations,which can help in the design of more effi-cient and effective cutting systems.
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
基金Project(51275475)supported by the National Natural Science Foundation of ChinaProject(2014BY001)supported by the Department of Education in Zhejiang Province,ChinaProject(2014EP0110)supported by the Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology,Ministry of Education and Zhejiang Province,China
文摘The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.
基金Tianjin Municipal Association of Higher Vocational&Technical Education Projects(No.XIV412)
文摘Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.