Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain...Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica.展开更多
Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate...Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate solubilization by these bacteria is the ability of the microorganisms to utilize phosphate. The objective of this study was to determine the ability of phosphate solubilizing bacteria isolated from coffee plant rhizosphere and their effects on robusta coffee seedling growth. This research was carried out by taking soil samples from Andungsari (Bondowoso District) and Kaliwining (Jember District) coffee plantations, both located in East Java. Liquid medium of Pikovskaya was used for isolation of phosphate solubilizing bacteria from the soil samples. Results of this study showed that 12 phosphate solubilizing bacteria were obtained from this isolation, eight isolates from Andungsari and four isolates from Kaliwining. Selection of those bacteria isolates was based on the qualitative ability in phosphate solubilizing by measuring the clear zone surrounding the colonies and quantitatively by measuring the solubilized phosphate using spectrophotometer. The results showed that four isolates, in the order of PFpKW1, PFpC61, PFsC62a, and PFsB 11, had the highest qualitative ability in solubilizing phosphate, while for the highest quantitative ability the order was PFpKW 1, PFpC61, PFsC62a, and PFsB 11. In a green house study, inoculation of these selected isolates onto Robusta coffee seedlings positively enhanced the coffee seedling growth. Phenotypic test indicated that the four isolates are similar to the genus of Pseudomonas.展开更多
文摘Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica.
文摘Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate solubilization by these bacteria is the ability of the microorganisms to utilize phosphate. The objective of this study was to determine the ability of phosphate solubilizing bacteria isolated from coffee plant rhizosphere and their effects on robusta coffee seedling growth. This research was carried out by taking soil samples from Andungsari (Bondowoso District) and Kaliwining (Jember District) coffee plantations, both located in East Java. Liquid medium of Pikovskaya was used for isolation of phosphate solubilizing bacteria from the soil samples. Results of this study showed that 12 phosphate solubilizing bacteria were obtained from this isolation, eight isolates from Andungsari and four isolates from Kaliwining. Selection of those bacteria isolates was based on the qualitative ability in phosphate solubilizing by measuring the clear zone surrounding the colonies and quantitatively by measuring the solubilized phosphate using spectrophotometer. The results showed that four isolates, in the order of PFpKW1, PFpC61, PFsC62a, and PFsB 11, had the highest qualitative ability in solubilizing phosphate, while for the highest quantitative ability the order was PFpKW 1, PFpC61, PFsC62a, and PFsB 11. In a green house study, inoculation of these selected isolates onto Robusta coffee seedlings positively enhanced the coffee seedling growth. Phenotypic test indicated that the four isolates are similar to the genus of Pseudomonas.