Let R be a commutative Noetherian ring, I and J be two ideals of R, and M be an R-module. We study the cofiniteness and finiteness of the local cohomology module HiI,J(M) and give some conditions for the finiteness ...Let R be a commutative Noetherian ring, I and J be two ideals of R, and M be an R-module. We study the cofiniteness and finiteness of the local cohomology module HiI,J(M) and give some conditions for the finiteness of HomR(R/I, HsI,J(M)) and Ext1R(R/I, HsI,J(M)). Also, we get some results on the attached primes of HdimMI,J (M).展开更多
Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t≥ 0 is an inte...Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t≥ 0 is an integer and p C Supp H^t_p (M), then Hm^t+dim R/p (M) is not p-cofinite. Then we obtain a partial answer to a question raised by Huneke. Namely, if R is a complete local ring, then H^n_m (M) is finitely generated if and only if 0 ≤ n ¢ W, where W ---- {t + dimR/p丨p ∈ SuppH^t_p(M)/V(m)}. Also, we show that if J C I are 1-dimensional ideals of R, then H^t_I(M) is J-cominimax, and H^t_I(M) is finitely generated (resp., minimax) if and only if H}R, (Mp) is finitely generated for all p C Spec R (resp., p ∈ SpecR/MaxR). Moreover, the concept of the J-cofiniteness dimension cJ(M) of M relative to I is introduced, and we explore an interrelation between c^I_m(M) and the filter depth of M in I. Finally, we show that if R is complete and dim M/IM ≠ 0, then c^I_m (R) ---- inf{depth Mp + dim R/p 丨 P ∈ Supp M/IM/V(m)}.展开更多
In this paper, let (R, m) be a Noetherian local ring, I lohtain in R an ideal, M and N be two finitely generated modules. Firstly, we study the properties of HI^t(M), t = f-depth(I, M) and discuss the relationsh...In this paper, let (R, m) be a Noetherian local ring, I lohtain in R an ideal, M and N be two finitely generated modules. Firstly, we study the properties of HI^t(M), t = f-depth(I, M) and discuss the relationship between the Artinianness of HI^i(M, N) and the Artinianness of HI^i(N). Then, we get that HI^d(M, N) is I-cofinite, if (R, m) is a d-dimensional Gorenstein local ring.展开更多
Let R be a commutative Noetherian ring, α an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that dim Supp Hi a(M) ≤ 1 for all i 〈 t if and on...Let R be a commutative Noetherian ring, α an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that dim Supp Hi a(M) ≤ 1 for all i 〈 t if and only if there exists an ideal b of R such that dimR/b ≤ 1 and Hia(M) ≌ Hi b(M) for all i 〈 t. Moreover, we prove that dimSuppHia(M) 〈≤dim M - i for all i.展开更多
基金The NSF(BK2011276) of Jiangsu Provincethe NSF(10KJB110007,11KJB110011) for Colleges and Universities in Jiangsu Provincethe Research Foundation(Q3107803) of Pre-research Project of Soochow University
文摘Let R be a commutative Noetherian ring, I and J be two ideals of R, and M be an R-module. We study the cofiniteness and finiteness of the local cohomology module HiI,J(M) and give some conditions for the finiteness of HomR(R/I, HsI,J(M)) and Ext1R(R/I, HsI,J(M)). Also, we get some results on the attached primes of HdimMI,J (M).
文摘Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t≥ 0 is an integer and p C Supp H^t_p (M), then Hm^t+dim R/p (M) is not p-cofinite. Then we obtain a partial answer to a question raised by Huneke. Namely, if R is a complete local ring, then H^n_m (M) is finitely generated if and only if 0 ≤ n ¢ W, where W ---- {t + dimR/p丨p ∈ SuppH^t_p(M)/V(m)}. Also, we show that if J C I are 1-dimensional ideals of R, then H^t_I(M) is J-cominimax, and H^t_I(M) is finitely generated (resp., minimax) if and only if H}R, (Mp) is finitely generated for all p C Spec R (resp., p ∈ SpecR/MaxR). Moreover, the concept of the J-cofiniteness dimension cJ(M) of M relative to I is introduced, and we explore an interrelation between c^I_m(M) and the filter depth of M in I. Finally, we show that if R is complete and dim M/IM ≠ 0, then c^I_m (R) ---- inf{depth Mp + dim R/p 丨 P ∈ Supp M/IM/V(m)}.
文摘In this paper, let (R, m) be a Noetherian local ring, I lohtain in R an ideal, M and N be two finitely generated modules. Firstly, we study the properties of HI^t(M), t = f-depth(I, M) and discuss the relationship between the Artinianness of HI^i(M, N) and the Artinianness of HI^i(N). Then, we get that HI^d(M, N) is I-cofinite, if (R, m) is a d-dimensional Gorenstein local ring.
文摘Let R be a commutative Noetherian ring, α an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. In this paper, it is shown that dim Supp Hi a(M) ≤ 1 for all i 〈 t if and only if there exists an ideal b of R such that dimR/b ≤ 1 and Hia(M) ≌ Hi b(M) for all i 〈 t. Moreover, we prove that dimSuppHia(M) 〈≤dim M - i for all i.