Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most en...Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most enabling technologies related to dynamic spectrum access are con-sidered individually.In this paper,we consider these key technologies jointly and introduce a new implementation scheme for a Dynamic Spectrum Access Network Based on Cognitive Radio(DSAN-BCR).We start with a flexible hardware platform for DSAN-BCR,as well as a flexible protocol structure that dominates the operation of DSAN-BCR.We then focus on the state of the art of key technologies such as spectrum sensing,spectrum resources management,dynamic spectrum access,and routing that are below the network layer in DSAN-BCR,as well as the development of technologies related to higher layers.Last but not the least,we analyze the challenges confronted by these men-tioned technologies in DSAN-BCR,and give the perspectives on the future development of these technologies.The DSAN-BCR introduced is expected to provide a system level guidance to alleviate the problem of spectrum scarcity.展开更多
Non-orthogonal multiple access is a promising technique to meet the harsh requirements for the internet of things devices in cognitive radio networks.To improve the energy efficiency(EE)of the unlicensed secondary use...Non-orthogonal multiple access is a promising technique to meet the harsh requirements for the internet of things devices in cognitive radio networks.To improve the energy efficiency(EE)of the unlicensed secondary users(SU),a power allocation(PA)algorithm with polynomial complexity is investigated.We first establish the feasible range of power consumption ratio using Karush-Kuhn-Tucker optimality conditions to support each SU’s minimum quality of service and the effectiveness of successive interference cancellation.Then,we formulate the EE optimization problem considering the total transmit power requirements which leads to a non-convex fractional programming problem.To efficiently solve the problem,we divide it into an inner-layer and outer-layer optimization sub-problems.The inner-layer optimization which is formulated to maximize the sub-carrier PA coefficients can be transformed into the difference of convex programming by using the first-order Taylor expansion.Based on the solution of the inner-layer optimization sub-problem,the concave-convex fractional programming problem of the outer-layer optimization sub-problem may be converted into the Lagrangian relaxation model employing the Dinkelbach algorithm.Simulation results demonstrate that the proposed algorithm has a faster convergence speed than the simulated annealing algorithm,while the average system EE loss is only less than 2%.展开更多
文摘Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most enabling technologies related to dynamic spectrum access are con-sidered individually.In this paper,we consider these key technologies jointly and introduce a new implementation scheme for a Dynamic Spectrum Access Network Based on Cognitive Radio(DSAN-BCR).We start with a flexible hardware platform for DSAN-BCR,as well as a flexible protocol structure that dominates the operation of DSAN-BCR.We then focus on the state of the art of key technologies such as spectrum sensing,spectrum resources management,dynamic spectrum access,and routing that are below the network layer in DSAN-BCR,as well as the development of technologies related to higher layers.Last but not the least,we analyze the challenges confronted by these men-tioned technologies in DSAN-BCR,and give the perspectives on the future development of these technologies.The DSAN-BCR introduced is expected to provide a system level guidance to alleviate the problem of spectrum scarcity.
基金supported in part by the Science and Technology Research Program of the National Science Foundation of China(No.61671096)Chongqing Research Program of Basic Science and Frontier Technology(No.cstc2017jcyj BX0005)+1 种基金Chongqing Municipal Education Commission(No.KJQN201800642)Doctoral Student Training Program(No.BYJS2016009)。
文摘Non-orthogonal multiple access is a promising technique to meet the harsh requirements for the internet of things devices in cognitive radio networks.To improve the energy efficiency(EE)of the unlicensed secondary users(SU),a power allocation(PA)algorithm with polynomial complexity is investigated.We first establish the feasible range of power consumption ratio using Karush-Kuhn-Tucker optimality conditions to support each SU’s minimum quality of service and the effectiveness of successive interference cancellation.Then,we formulate the EE optimization problem considering the total transmit power requirements which leads to a non-convex fractional programming problem.To efficiently solve the problem,we divide it into an inner-layer and outer-layer optimization sub-problems.The inner-layer optimization which is formulated to maximize the sub-carrier PA coefficients can be transformed into the difference of convex programming by using the first-order Taylor expansion.Based on the solution of the inner-layer optimization sub-problem,the concave-convex fractional programming problem of the outer-layer optimization sub-problem may be converted into the Lagrangian relaxation model employing the Dinkelbach algorithm.Simulation results demonstrate that the proposed algorithm has a faster convergence speed than the simulated annealing algorithm,while the average system EE loss is only less than 2%.