In Cognitive radio ad hoc networks (CRAHNs), the secondary users (SUs) or cognitive radio nodes (CRs) are always equipped with limited energy and have a high error probability of data transmission. To address th...In Cognitive radio ad hoc networks (CRAHNs), the secondary users (SUs) or cognitive radio nodes (CRs) are always equipped with limited energy and have a high error probability of data transmission. To address this issue, we first describe the network utility under energy constraint as a max-min model, where the re-transmission strategy with network coding is employed. Additionally, the expression of retransmission probability is presented in terms of power and bit error rate (BER). Moreover, since the max-min model is non-convex in both objective and constraints, we use a normal- form game to find a near-optimal solution. The simulation results show that the proposed approach could achieve a higher network utility than the compared approaches.展开更多
One critical issue for routing in cognitive radio ad hoc networks (CRAHNs) is how to select a reliable path for forwarding traffic. This is because mobility may cause radio links to break frequently. The reliability o...One critical issue for routing in cognitive radio ad hoc networks (CRAHNs) is how to select a reliable path for forwarding traffic. This is because mobility may cause radio links to break frequently. The reliability of a path depends on the availability of those links that constitutes the path. In this letter, we present a novel approach to predict the probability of the availability of the link between two cognitive radio nodes. The prediction is achieved by estimating the link activation and spectrum activation probabilities. Our prediction is verified by simulation and proved to be accurate. This study can provide reliability assurance on dynamic routing for cognitive radio ad hoc networks.展开更多
For the realization of green communications in cognitive radio ad hoc networks(CRAHNs), selfadaptive and efficient power allocation for secondary users(SUs) is essential. With the distributed and timevarying network t...For the realization of green communications in cognitive radio ad hoc networks(CRAHNs), selfadaptive and efficient power allocation for secondary users(SUs) is essential. With the distributed and timevarying network topology, it needs to consider how to optimize the throughput and power consuming, avoid the interference to primary users(PUs) and other SUs, and pay attention to the convergence and fairness of the algorithm. In this study, this problem is modeled as a constraint optimization problem. Each SU would adjust its power and corresponding strategy with the goal of maximizing its throughput. By studying the interactions between SUs in power allocation and strategy selection, we introduce best-response dynamics game theory and prove the existence of Nash equilibrium(NE) point for performance analysis. We further design a fully distributed algorithm to make the SUs formulate their strategy based on their utility functions, the strategy and number of neighbors in local area. Compared with the water-filling(WF) algorithm, the proposed scheme can significantly increase convergent speed and average throughput, and decrease the power consuming of SUs.展开更多
Cognitive radio,which is capable of enabling dynamic spectrum access,is a promising technology in future wireless communication.The feasibility of cognitive radio network greatly depends on the energy efciency and rel...Cognitive radio,which is capable of enabling dynamic spectrum access,is a promising technology in future wireless communication.The feasibility of cognitive radio network greatly depends on the energy efciency and reliability of spectrum sensing technology.In this paper,spectrum sensing in cognitive ad-hoc network(CAN)with wide-band dynamic spectrum is considered.A cognitive cluster head(CCH)is set and responsible for dividing the wide-band spectrum into multiple sub-channels;it can either sense sub-channels in a centralized manner,or make use of sensing modules to sense sub-channels in a distributed manner.Then cognitive users(CUs)can get sensing results and access to the available sub-channel.We take the cost of control message into consideration and formulate the energy consumption of CAN in terms of sub-channel sampling rate and whole-band sensing time.We define energy efciency intuitively and solve the energy efciency optimization problem with sensing reliability constraints by constructing a parametric problem and obtain the optimal sampling rate and the wholeband sensing time.Power dissipation model of a practical A/D convertor(ADC)is introduced,and numerical results are given to show the energy efciency performance of two diferent sensing manners.展开更多
基金This work was supported in part by the Research Fund for the Doctoral Program of Higher Education of China under Grant 20122304130002,the Natural Science Foundation in China under Grant 61370212,the Fundamental Research Fund for the Central Universities under Grant HEUCFZ1213 and HEUCF100601
文摘In Cognitive radio ad hoc networks (CRAHNs), the secondary users (SUs) or cognitive radio nodes (CRs) are always equipped with limited energy and have a high error probability of data transmission. To address this issue, we first describe the network utility under energy constraint as a max-min model, where the re-transmission strategy with network coding is employed. Additionally, the expression of retransmission probability is presented in terms of power and bit error rate (BER). Moreover, since the max-min model is non-convex in both objective and constraints, we use a normal- form game to find a near-optimal solution. The simulation results show that the proposed approach could achieve a higher network utility than the compared approaches.
文摘One critical issue for routing in cognitive radio ad hoc networks (CRAHNs) is how to select a reliable path for forwarding traffic. This is because mobility may cause radio links to break frequently. The reliability of a path depends on the availability of those links that constitutes the path. In this letter, we present a novel approach to predict the probability of the availability of the link between two cognitive radio nodes. The prediction is achieved by estimating the link activation and spectrum activation probabilities. Our prediction is verified by simulation and proved to be accurate. This study can provide reliability assurance on dynamic routing for cognitive radio ad hoc networks.
基金the National Natural Science Foundation of China(No.61271182)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120005120010)
文摘For the realization of green communications in cognitive radio ad hoc networks(CRAHNs), selfadaptive and efficient power allocation for secondary users(SUs) is essential. With the distributed and timevarying network topology, it needs to consider how to optimize the throughput and power consuming, avoid the interference to primary users(PUs) and other SUs, and pay attention to the convergence and fairness of the algorithm. In this study, this problem is modeled as a constraint optimization problem. Each SU would adjust its power and corresponding strategy with the goal of maximizing its throughput. By studying the interactions between SUs in power allocation and strategy selection, we introduce best-response dynamics game theory and prove the existence of Nash equilibrium(NE) point for performance analysis. We further design a fully distributed algorithm to make the SUs formulate their strategy based on their utility functions, the strategy and number of neighbors in local area. Compared with the water-filling(WF) algorithm, the proposed scheme can significantly increase convergent speed and average throughput, and decrease the power consuming of SUs.
基金the National Natural Science Foundation of China(Nos.61102052 and 60972050)the National Basic Research Program(973)of China(No.2010CB731803)+1 种基金the China Ministry of Education Fok Ying Tung Fund(No.122002)the National Science and Technology Major Project of China(Nos.2010ZX03002-007-01 and 2010ZX03003-001-01)
文摘Cognitive radio,which is capable of enabling dynamic spectrum access,is a promising technology in future wireless communication.The feasibility of cognitive radio network greatly depends on the energy efciency and reliability of spectrum sensing technology.In this paper,spectrum sensing in cognitive ad-hoc network(CAN)with wide-band dynamic spectrum is considered.A cognitive cluster head(CCH)is set and responsible for dividing the wide-band spectrum into multiple sub-channels;it can either sense sub-channels in a centralized manner,or make use of sensing modules to sense sub-channels in a distributed manner.Then cognitive users(CUs)can get sensing results and access to the available sub-channel.We take the cost of control message into consideration and formulate the energy consumption of CAN in terms of sub-channel sampling rate and whole-band sensing time.We define energy efciency intuitively and solve the energy efciency optimization problem with sensing reliability constraints by constructing a parametric problem and obtain the optimal sampling rate and the wholeband sensing time.Power dissipation model of a practical A/D convertor(ADC)is introduced,and numerical results are given to show the energy efciency performance of two diferent sensing manners.