In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channe...In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.展开更多
In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the pr...In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the presence of the PU is detected.Then the harvested energy is converted into the electrical power to supply the transmission of the SU at the detected absence of the PU.By adopting the periodic spectrum sensing,the average total transmission rate of the SU is maximized through optimizing the sensing time,subject to the constraints of the probabilities of false alarm and detection,the harvested energy and the interference rate control.The simulation results show that there deed exists an optimal sensing time that maximizes the transmission rate,and the maximum transmission rate of the energy-harvesting CR can better approach to that of the traditional CR with the increasing of the detection probability.展开更多
基金supported by National Nature Science Foundation of China(NO.61372109)
文摘In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.
基金supported by the National Natural Science Foundation of China under Grant Nos.61201143,61402416,611301132and 61471194the Natural Science Foundation of Jiangsu Province under Grant No.BK20140828+2 种基金the Natural Science Foundation of Zhejiang Province under Grant No.LQ14F010003the Chinese Postdoctoral Science Foundation under Grant No.2015M580425the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry
文摘In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the presence of the PU is detected.Then the harvested energy is converted into the electrical power to supply the transmission of the SU at the detected absence of the PU.By adopting the periodic spectrum sensing,the average total transmission rate of the SU is maximized through optimizing the sensing time,subject to the constraints of the probabilities of false alarm and detection,the harvested energy and the interference rate control.The simulation results show that there deed exists an optimal sensing time that maximizes the transmission rate,and the maximum transmission rate of the energy-harvesting CR can better approach to that of the traditional CR with the increasing of the detection probability.