By means of the Weyl correspondence and the explicit normally ordered expression of the Wigner operatorwe convert the time evolution equation of coherent states,governed by some Hamiltonian operators,into seeking forc...By means of the Weyl correspondence and the explicit normally ordered expression of the Wigner operatorwe convert the time evolution equation of coherent states,governed by some Hamiltonian operators,into seeking forconsistent solution of a set of evolution equtions of classical variables which can meet the requirment that an initialcoherent state remains coherent all the time.展开更多
Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermit...Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermiteexcited coherent state due to its normalization factor related to a Hermite polynomial. In addition, we adopt the Hilbert-Schmidt distance to quantify the non-Gaussian character of GPACS and discuss the decoherence of GPACS in dissipative channel by studying the loss of nonclassicality in reference of the negativity of Wigner function.展开更多
We investigate the entanglement of pair cat states in the phase damping channel by adopting the log-negativity and then study the possible violations of Bell's inequalities for the pair cat states in terms of the Wig...We investigate the entanglement of pair cat states in the phase damping channel by adopting the log-negativity and then study the possible violations of Bell's inequalities for the pair cat states in terms of the Wigner representation in phase space based upon parity measurement and displacement operation.展开更多
We present a scheme for generating four pairs of two-atom Einstein Podolsky-Rosen (EPR) states using the simultaneous interaction of the two atoms with a single-mode cavity field under a large detuning condition. Th...We present a scheme for generating four pairs of two-atom Einstein Podolsky-Rosen (EPR) states using the simultaneous interaction of the two atoms with a single-mode cavity field under a large detuning condition. The influence of cavity dissipation on the prepared EPR states is investigated by means of the superoperator method and the state fidelity. It is shown that some kinds of the prepared EPR states are robust against cavity dissipation and the intensity of the field, and maintain their entanglement invariance, and the others are fragile and completely destroyed by the action of cavity dissipation and the intensity of the field in the long-time limit. Decoherence time of the fragile entangled states is extremely small for a typical cavity-QED experimental data.展开更多
The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent stat...The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs.展开更多
In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuti...In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuting operators. Addressing this issue, a nonstandard unitary transformation technique is highlighted here with new perspective. In a spirit of “quantum” series expansions, the transition probabilities between initial and final states, such as displaced, squeezed and other nonlinearly transformed coherent states are obtained both numerically and analytically. This paper concludes that, although this technique is novel, its implementations for more extended systems are needed.展开更多
The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent ...The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent initial value, which would permit in certain models classical coherent initial gravitational wave states. Furthermore, several arguments pro and con as to if or not initial relic GW should be high frequency will be presented, with the reason given why earlier string models did NOT favor low frequency relic GW from the big bang. What is observed is that large higher dimensions above our 4 Dimensional space time, if recipients of matter-energy from collapse and re birth of the universe are enough to insure low relic GW. The existence of higher dimensions, in itself if the additional dimensions are small and compact will have no capacity to lower the frequency limit values of relic GW, as predicted by Giovannini, et al. in 1995.展开更多
Based on the atom-cavity-field interaction, this paper proposes a scheme for the teleportation of a bipartite entangled coherent state (ECS) with high fidelity as long as │α│ is not too small. In this proposal, o...Based on the atom-cavity-field interaction, this paper proposes a scheme for the teleportation of a bipartite entangled coherent state (ECS) with high fidelity as long as │α│ is not too small. In this proposal, only four cavities and a three-level cascade atom are needed. The fidelity of the ECS is calculated and analysed in detail.展开更多
In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of ...In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of the quantum states are studied. The numerical results indicate that the amplitudes, the ratio between the amplitudes of two coherent states, the phase difference between the two components and the relative phase of the two coefficients play important roles in the squeezing effects of the position entropy and momentum entropy.展开更多
The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitu...The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.展开更多
Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). ...Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is 〈 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection.展开更多
We find a new x-parameter squeezed coherent state (p, q)κ representation, which possesses well-behaved features, i.e., its Wigner function's marginal distribution in the "q-direction" and in the "p-direction" ...We find a new x-parameter squeezed coherent state (p, q)κ representation, which possesses well-behaved features, i.e., its Wigner function's marginal distribution in the "q-direction" and in the "p-direction" is the Gauss/an form exp(-κ(q' - q)2}, and exp{(p' - p)2/κ}, respectively. Based on this, the Husimi function of(p, q)κ is also obtained, which is a Gauss/an broaden version of the Wigner function. The (P, q)κ state provides a good representative space for studying various properties ot the Husimi operator.展开更多
In this paper, we propose a class of the generalized photon-added coherent states (GPACSs) obtained by repeatedly operating the combination of Bosonie creation and annihilation operatoes on the coherent state. The n...In this paper, we propose a class of the generalized photon-added coherent states (GPACSs) obtained by repeatedly operating the combination of Bosonie creation and annihilation operatoes on the coherent state. The normalization factor of GPACS is related to Hermite polynomial. We also derive the explicit expressions of its statistical properties such as photocount distribution, Wigner function and tomogram and investigate their behaviour as the photon-added number varies graphically. It is found that GPACS is a kind of nonclassical state since Wigner function exhibits the negativity by increasing the photon-added number.展开更多
In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the...In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.展开更多
We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition...We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition. The scheme works in the strong-excitation regime, which is of experimental importance in view of decoherence.展开更多
We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Partic...We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Particularly, when the single-photon-added coherent state is observed by developing the novel technique of Zavatta et al (2004 Science 306 660), we can simultar/eously obtain the generalized N-qubit W state.展开更多
This paper studies the dynamics of nonlocality for a bosonic entangled coherent state in a phase damping model. The density operator of the system is solved by using a superoperator method. The dynamics of nonlocality...This paper studies the dynamics of nonlocality for a bosonic entangled coherent state in a phase damping model. The density operator of the system is solved by using a superoperator method. The dynamics of nonlocality for the bosonic entangled coherent state is uncovered by the Bell operator based on the pseudospin operator of a light field. The dynamics of the nonlocality for this state has also been studied by other Bell operators. The result of the numerical calculations of the Bell function shows that the quantum nonlocality heavily depends on the chosen Bell operator.展开更多
An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byu...An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.展开更多
We present a quantum measurement model where the meter is taken to be a squeezed reservoir. life realize decoherence in macroscopic limits using Bogoliubov transformation, and this kind of system-meter coupling has a ...We present a quantum measurement model where the meter is taken to be a squeezed reservoir. life realize decoherence in macroscopic limits using Bogoliubov transformation, and this kind of system-meter coupling has a dramatic influence on decoherence.展开更多
In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and n...In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.展开更多
基金Supported by the Specialized Research Fund for Doctoral Program of Higher Educationthe National Natural Science Foundation of China under Grant Nos.10874174 and 10947017/A05
文摘By means of the Weyl correspondence and the explicit normally ordered expression of the Wigner operatorwe convert the time evolution equation of coherent states,governed by some Hamiltonian operators,into seeking forconsistent solution of a set of evolution equtions of classical variables which can meet the requirment that an initialcoherent state remains coherent all the time.
基金supported by the National Natural Science Foundation of China (Grant No.11174114)the Research Foundation of Changzhou Institute of Technology,China (Grant No.YN1007)
文摘Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermiteexcited coherent state due to its normalization factor related to a Hermite polynomial. In addition, we adopt the Hilbert-Schmidt distance to quantify the non-Gaussian character of GPACS and discuss the decoherence of GPACS in dissipative channel by studying the loss of nonclassicality in reference of the negativity of Wigner function.
文摘We investigate the entanglement of pair cat states in the phase damping channel by adopting the log-negativity and then study the possible violations of Bell's inequalities for the pair cat states in terms of the Wigner representation in phase space based upon parity measurement and displacement operation.
基金Supported by the Natural Science Foundation of the Education Department of Hunan Province under Grant No 05C696.
文摘We present a scheme for generating four pairs of two-atom Einstein Podolsky-Rosen (EPR) states using the simultaneous interaction of the two atoms with a single-mode cavity field under a large detuning condition. The influence of cavity dissipation on the prepared EPR states is investigated by means of the superoperator method and the state fidelity. It is shown that some kinds of the prepared EPR states are robust against cavity dissipation and the intensity of the field, and maintain their entanglement invariance, and the others are fragile and completely destroyed by the action of cavity dissipation and the intensity of the field in the long-time limit. Decoherence time of the fragile entangled states is extremely small for a typical cavity-QED experimental data.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10875076,11305098 and 11147020the Fundamental Research Funds for the Central Universities under Grant No GK201302008the Interdisciplinary Incubation Project of Shaanxi Normal University under Grant No 5
文摘The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs.
文摘In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuting operators. Addressing this issue, a nonstandard unitary transformation technique is highlighted here with new perspective. In a spirit of “quantum” series expansions, the transition probabilities between initial and final states, such as displaced, squeezed and other nonlinearly transformed coherent states are obtained both numerically and analytically. This paper concludes that, although this technique is novel, its implementations for more extended systems are needed.
文摘The author argues in this document that initial vacuum state values possibly responsible for GW generation in relic conditions in the initial onset of inflation may have a temporary unsqueezed, possibly even coherent initial value, which would permit in certain models classical coherent initial gravitational wave states. Furthermore, several arguments pro and con as to if or not initial relic GW should be high frequency will be presented, with the reason given why earlier string models did NOT favor low frequency relic GW from the big bang. What is observed is that large higher dimensions above our 4 Dimensional space time, if recipients of matter-energy from collapse and re birth of the universe are enough to insure low relic GW. The existence of higher dimensions, in itself if the additional dimensions are small and compact will have no capacity to lower the frequency limit values of relic GW, as predicted by Giovannini, et al. in 1995.
文摘Based on the atom-cavity-field interaction, this paper proposes a scheme for the teleportation of a bipartite entangled coherent state (ECS) with high fidelity as long as │α│ is not too small. In this proposal, only four cavities and a three-level cascade atom are needed. The fidelity of the ECS is calculated and analysed in detail.
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant No T0650013)
文摘In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of the quantum states are studied. The numerical results indicate that the amplitudes, the ratio between the amplitudes of two coherent states, the phase difference between the two components and the relative phase of the two coefficients play important roles in the squeezing effects of the position entropy and momentum entropy.
文摘The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.
基金Project supported by the National Basic Research Program of China(Grants Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61201239,61205118,11304397,and 61475148)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB01030100 and XDB01030300)
文摘Recently, the Hong-Ou-Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is 〈 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection.
基金*The project supported by the Specialized Research Fund for the Doctorial Progress of.Higher Education of China under Grant No. 20040358019
文摘We find a new x-parameter squeezed coherent state (p, q)κ representation, which possesses well-behaved features, i.e., its Wigner function's marginal distribution in the "q-direction" and in the "p-direction" is the Gauss/an form exp(-κ(q' - q)2}, and exp{(p' - p)2/κ}, respectively. Based on this, the Husimi function of(p, q)κ is also obtained, which is a Gauss/an broaden version of the Wigner function. The (P, q)κ state provides a good representative space for studying various properties ot the Husimi operator.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘In this paper, we propose a class of the generalized photon-added coherent states (GPACSs) obtained by repeatedly operating the combination of Bosonie creation and annihilation operatoes on the coherent state. The normalization factor of GPACS is related to Hermite polynomial. We also derive the explicit expressions of its statistical properties such as photocount distribution, Wigner function and tomogram and investigate their behaviour as the photon-added number varies graphically. It is found that GPACS is a kind of nonclassical state since Wigner function exhibits the negativity by increasing the photon-added number.
文摘In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.
文摘We propose a scheme to generate entangled coherent states for the vibrational modes of N trapped ions.In the scheme the first ion is sequentially excited by two travelling wave laser fields tuned to the ion transition. The scheme works in the strong-excitation regime, which is of experimental importance in view of decoherence.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10304020 and 10474117), the State Key Development Program for Basic Research of China (Grant No 2001CB309309), and also in part by the Sunshine Project of Wuhan, China.
文摘We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Particularly, when the single-photon-added coherent state is observed by developing the novel technique of Zavatta et al (2004 Science 306 660), we can simultar/eously obtain the generalized N-qubit W state.
基金Project supported by the National Natural Science Foundation of China (Grant No 60878001)the Natural Science Foundation of Shandong Province,China (Grant No Y2006 A24)
文摘This paper studies the dynamics of nonlocality for a bosonic entangled coherent state in a phase damping model. The density operator of the system is solved by using a superoperator method. The dynamics of nonlocality for the bosonic entangled coherent state is uncovered by the Bell operator based on the pseudospin operator of a light field. The dynamics of the nonlocality for this state has also been studied by other Bell operators. The result of the numerical calculations of the Bell function shows that the quantum nonlocality heavily depends on the chosen Bell operator.
文摘An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.
基金the Key Subject Foundation for Atomic and Molecular Physics of Anhui Province under,安徽师范大学校科研和教改项目
文摘We present a quantum measurement model where the meter is taken to be a squeezed reservoir. life realize decoherence in macroscopic limits using Bogoliubov transformation, and this kind of system-meter coupling has a dramatic influence on decoherence.
文摘In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.