期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Enabling structural and interfacial stability of 5 V spinel LiNi0.5Mn1.5O4 cathode by a coherent interface 被引量:2
1
作者 Min Xu Ming Yang +6 位作者 Minfeng Chen Lanhui Gu Linshan Luo Songyan Chen Jizhang Chen Bo Liu Xiang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期266-276,I0007,共12页
Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),a 5 V class high voltage cathode,has been regarded as an attractive candidate to further improve the energy density of lithium-ion battery.The issue simultaneously enabling side st... Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),a 5 V class high voltage cathode,has been regarded as an attractive candidate to further improve the energy density of lithium-ion battery.The issue simultaneously enabling side stability and maintaining high interfacial kinetics,however,has not yet been resolved.Herein,we design a coherent Li_(1.3)A_(l0.3)Ti_(1.7)(PO)_(4)(LATP)layer that is crystally connected to the spinel LNMO host lattices,which offers fast lithium ions transportation as well as enhances the mechanical stability that prevents the particle fracture.Furthermore,the inactive Li_(3)BO_(3)(LBO)coating layer inhibits the corrosion of transition metals and continuous side reactions.Consequently,the coherent-engineered LNMO-LATPLBO cathode material exhibits superior electrochemical cycling stability in a window of 3.0–5.0 V,for example a high-capacity retention that is 89.7%after 500 cycles at 200 m A g-1obtained and enhanced rate performance(85.1 m A h g^(-1)at 800 m A g^(-1))when tested with a LiPF6-based carbonate electrolyte.Our work presents a new approach of engineering 5 V class spinel oxide cathode that combines interfacial coherent crystal lattice design and surface coating. 展开更多
关键词 Lithium-ion battery Spinel cathode LATP coherent interface
下载PDF
Model of Coherent Interface Formation in Cement-Based Composites Containing Polyblend of Poly vinyl Alcohol and Methylcellulose
2
作者 赵文俞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第2期58-61,共4页
The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA), methylcellulose (MC) and their potyblend in an amount of 10 wt % with respect to cemen... The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA), methylcellulose (MC) and their potyblend in an amount of 10 wt % with respect to cement, as well as the texture of dehydrated bodies of PVA, MC, and the potyblend solutions, were investigated with SEM. The network texture of the dehydrated polyblend is confirmed by comparing the texture of dehydrated bodies of PVA and MC. The network texture has restrained the movement of polyblend molecules in the cement mortar but is helpful to forming a coherent interface between cement paste and quartz. The key factor of forming the coherent interface is not the neutralization reaction between H + from hydrolysis of quarts: and OH- from hydration of cement, but the electrostatic attraction and the chemical reaction between polar groups on the polyblend molecule and cations and onions from hydrolysis of quartz and hydration of cement, respectively. The model of the coherent interface formation is that excessive [HSiO3]- and [SiO3]2- onions are bonded with the hydrated cations such as Ca2+ and Al3+ , which is confirmed by the gel containing Ca and Si on the quartz surface. 展开更多
关键词 cement-based composite coherent interface cement paste QUARTZ palyblend of PVA and MC
下载PDF
Lightweight diamond/Cu interface tuning for outstanding heat conduction 被引量:1
3
作者 Wenjie Dou Congxu Zhu +6 位作者 Xiwang Wu Xun Yang Wenjun Fa Yange Zhang Junfeng Tong Guangshan Zhu Zhi Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期229-240,共12页
With rapid developments in the field of very large-scale integrated circuits,heat dissipation has emerged as a significant factor that restricts the high-density integration of chips.Due to their high thermal conducti... With rapid developments in the field of very large-scale integrated circuits,heat dissipation has emerged as a significant factor that restricts the high-density integration of chips.Due to their high thermal conductivity and low thermal expansion coefficient,diamond/Cu composites have attracted considerable attention as a promising thermal management material.In this study,a surface tungsten carbide gradient layer coating of diamond particles has been realized using comprehensive magnetron sputtering technology and a heat treatment process.Diamond/Cu composites were prepared using high-temperature and high-pressure technology.The results show that,by adjusting the heat treatment process,tungsten carbide and di-tungsten carbide are generated by an in situ reaction at the tungsten–diamond interface,and W–WC–W_(2)C gradient layer-coated diamond particles were obtained.The diamond/Cu composites were sintered by high-temperature and high-pressure technology,and the density of surface-modified diamond/Cu composites was less than 4 g cm^(-3).The W–WC–W_(2)C@diamond/Cu composites have a thermal diffusivity as high as 331 mm^(2)s^(-1),and their thermal expansion coefficient is as low as 1.76×10^(-6)K^(-1).The interface coherent structure of the gradient layer-coated diamond/copper composite can effectively improve the interface heat transport efficiency. 展开更多
关键词 coherent interface diamond composite heat conduction surface modification
下载PDF
Revealing the atomic mechanism of diamond–iron interfacial reaction
4
作者 Yalun Ku Kun Xu +6 位作者 Longbin Yan Kuikui Zhang Dongsheng Song Xing Li Shunfang Li Shaobo Cheng Chongxin Shan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期255-263,共9页
Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous ... Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications. 展开更多
关键词 coherent interface counter-diffusion DIAMOND IRON phase transition
下载PDF
Constructing the coherent transition interface structure for enhancing strength and ductility of hexagonal boron nitride nanosheets/Al composites 被引量:1
5
作者 Lishi Ma Xiang Zhang +4 位作者 Yonghua Duan Siyuan Guo Dongdong Zhao Chunnian He Naiqin Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第14期235-248,共14页
The deformation incompatibility of components is a bottleneck restricting the exaltation of the strength and ductility of composites.Herein,the coherent transition interface was designed and produced in hexagonal boro... The deformation incompatibility of components is a bottleneck restricting the exaltation of the strength and ductility of composites.Herein,the coherent transition interface was designed and produced in hexagonal boron nitride nanosheets(BNNSs)/Al composites by reaction sintering route,expecting to re-lieve the deformation incompatibility between BNNSs and Al.It is demonstrated that with the sintering temperature for composites raising from 600℃ to 650℃,700℃ and 750℃,different interface bonding characteristics,which involve nucleation and growth of AlN continuous nanolayer,were confirmed.Fur-thermore,first-principles calculations show that the generation of the coherent transition interface im-proved the interfacial bonding strength of BNNSs/Al composites through covalent bonds.The composites with coherent transition interface exhibit excellent strength-toughness combination in tensile and impact tests.The finite element simulation and in-situ approach under tensile tests were applied to investigate the influence of transition interface structure on deformation behavior of BNNSs/Al composite.It is found that the generation of the transition interface can not only weaken the stress partitioning behavior in the elastic stage,but also constrain the crack initiation and propagation behavior in the elastic-plastic stage and plastic stage,thereby improving the deformation compatibility between BNNSs and Al.The present work provides a novel view into the breakthrough for the trade-offrelationship of strength and ductility by coherent transition interface design in nanocomposites. 展开更多
关键词 Nanocomposites Al-BNNSs system In-situ interface reaction coherent transition interface Strength and ductility
原文传递
Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption 被引量:8
6
作者 Hanxiao Xu Guozheng Zhang +5 位作者 Yi Wang Mingqiang Ning Bo Ouyang Yang Zhao Ying Huang Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期294-307,共14页
Precisely reducing the size of metal-organic frameworks(MOFs)derivatives is an effective strategy to manipulate their phase engineering owing to size-dependent oxidation;however,the underlying relationship between the... Precisely reducing the size of metal-organic frameworks(MOFs)derivatives is an effective strategy to manipulate their phase engineering owing to size-dependent oxidation;however,the underlying relationship between the size of derivatives and phase engineering has not been clarified so far.Herein,a spatial confined growth strategy is proposed to encapsulate small-size MOFs derivatives into hollow carbon nanocages.It realizes that the hollow cavity shows a significant spatial confinement effect on the size of confined MOFs crystals and subsequently affects the dielectric polarization due to the phase hybridization with tunable coherent interfaces and heterojunctions owing to size-dependent oxidation motion,yielding to satisfied microwave attenuation with an optimal reflection loss of-50.6 d B and effective bandwidth of 6.6 GHz.Meanwhile,the effect of phase hybridization on dielectric polarization is deeply visualized,and the simulated calculation and electron holograms demonstrate that dielectric polarization is shown to be dominant dissipation mechanism in determining microwave absorption.This spatial confined growth strategy provides a versatile methodology for manipulating the size of MOFs derivatives and the understanding of size-dependent oxidation-induced phase hybridization offers a precise inspiration in optimizing dielectric polarization and microwave attenuation in theory. 展开更多
关键词 Size-dependent oxidation Phase engineering coherent interface Dielectric polarization Electron holography
下载PDF
Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties 被引量:6
7
作者 Cheng-bin Wei Xing-hao Du +3 位作者 Yi-ping Lu Hui Jiang Ting-ju Li Tong-min Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1312-1317,共6页
We designed a novel Co-free AlCrFe2Ni2Ti0.5 high-entropy alloy(HEA)that features an excellent combination of strength and ductility in this study.The as-cast AlCrFe2Ni2Ti0.5 alloy showed equiaxed grains undergoing spi... We designed a novel Co-free AlCrFe2Ni2Ti0.5 high-entropy alloy(HEA)that features an excellent combination of strength and ductility in this study.The as-cast AlCrFe2Ni2Ti0.5 alloy showed equiaxed grains undergoing spinodal decomposition,which consisted of ultrafine-grained laminated body-centered cubic(bcc)phases and an ordered body-centered cubic(b2)phase,and some precipitates embedded in the b2 matrix.The bcc and b2 phases also feature a coherent interface.This unique structure impedes mobile dislocations and hinders the formation of cracks,thereby giving the AlCrFe2Ni2Ti0.5 HEA both high strength and plasticity.At room temperature,the as-cast AlCrFe2Ni2Ti0.5 alloy exhibited a compressive yield strength of 1714 MPa,an ultimate strength of 3307 MPa,and an elongation of 43%.These mechanical properties are superior to those of most reported HEAs. 展开更多
关键词 high-entropy alloys mechanical properties coherent interface spinodal structure
下载PDF
Formation and capturing of nanoparticles in Cu-1wt.%Fe alloy melt during directional solidification process
8
作者 Tao Wang Xiao-hua Chen +2 位作者 Guo-dong Shi Chang-rong Li Zi-dong Wang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第4期411-415,共5页
A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the allo... A single crystal Cu-1wt.%Fe alloy with finely dispersed iron-rich nanoparticles which keep coherent interface with the copper matrix was prepared under directional solidification.Formation of nanoparticles in the alloy melt was investigated by performing differential scanning calorimeter tests and designed water quenching experiment at a certain temperature.Results show that iron-rich nanoparticles are formed in the Cu-1wt.%Fe alloy melt before primaryα-Cu forms,which is not consistent with equilibrium phase diagram.Mechanism that iron-rich nanoparticles are uniformly captured in the matrix was described,which is that numerous nanoparticles follow Brownian motions and are engulfed in the solidified matrix which makes it possible to form uniformly distributed nanoparticles reinforced single crystal Cu-1wt.%Fe alloy. 展开更多
关键词 Single crystal Copper alloy Nanoparticle coherent interface Brownian motion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部