Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficienc...Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.展开更多
The partially coherent beams propagating through random media have been used in the past to enhance effect of nonlinear optical interaction. Moreover, after propagation through a random (or turbulent) medium the coh...The partially coherent beams propagating through random media have been used in the past to enhance effect of nonlinear optical interaction. Moreover, after propagation through a random (or turbulent) medium the coherent beam becomes a partially coherent one. In this research, the analytical formula for the average intensity of Gaussian beam propagating through random medium is derived and the influence of coherent partiality on optical gradient force acting on dielectric particle rounded by a random media is investigated.展开更多
Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang...Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.展开更多
A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross...A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross-spectral density followed by the optimal approximation of the obtained results in the chosen basis of modal functions. The proposed definition is illustrated by the results of numerical simulation.展开更多
We propose a novel retinal layer segmentation method to accurately segment 10 retinal layers in optical coherence tomography(OCT)images with intraretinal fluid.The method used a fan filter to enhance the linear inform...We propose a novel retinal layer segmentation method to accurately segment 10 retinal layers in optical coherence tomography(OCT)images with intraretinal fluid.The method used a fan filter to enhance the linear information pertaining to retinal boundaries in an OCT image by reducing the effect of vessel shadows and fluid regions.A random forest classifier was employed to predict the location of the boundaries.Two novel methods of boundary redirection(SR)and similarity correction(SC)were combined to carry out boundary tracking and thereby accurately locate retinal layer boundaries.Experiments were performed on healthy controls and subjects with diabetic macular edema(DME).The proposed method required an average of 415 s for healthy controls and of 482 s for subjects with DME and achieved high accuracy for both groups of subjects.The proposed method requires a shorter running time than previous methods and also provides high accuracy.Thus,the proposed method may be a better choice for small training datasets.展开更多
A solid-state green-light-emitting upconversion coherent random laser was realized by pumping macroporous erbium-doped lithium niobate with a 980 nm laser. The lasing threshold was determined to be about 40 k W∕cm~2....A solid-state green-light-emitting upconversion coherent random laser was realized by pumping macroporous erbium-doped lithium niobate with a 980 nm laser. The lasing threshold was determined to be about 40 k W∕cm~2.Above the threshold, the emission intensity increased sharply with the increasing pump intensity. Moreover, a narrow multi-peaks structure was observed in the green-light-emission band, and the positions of lasing lines were various at different angles. The results were the direct evidences of coherent random lasing emission from macroporous erbium-doped lithium niobate. These phenomena were attributed to the coexistence of upconversion emission and a multiple scattering feedback mechanism.展开更多
Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new fil...Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new filtering method is proposed, which uses the generalized S transform which has good time-frequency concentration criterion to transform seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random noise. The model study shows that the high frequency component in the first IMF represents mainly noise, so clearing the first IMF can suppress noise. The EMD filtering method in the t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that depends on position, frequency, and truncation characteristics of high wave numbers. This filtering method takes local data time-frequency characteristic into consideration and is easy to perform. Compared with AR predictive filtering, the component that this method filters is highly localized and contains relatively fewer low wave numbers and the filter result does not show over-smoothing effects. Real data processing proves that the EMD filtering method in the t-f-x domain after generalized S transform can effectively suppress random and coherent noise of steep dips.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62375040 and 11974071)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium.
文摘The partially coherent beams propagating through random media have been used in the past to enhance effect of nonlinear optical interaction. Moreover, after propagation through a random (or turbulent) medium the coherent beam becomes a partially coherent one. In this research, the analytical formula for the average intensity of Gaussian beam propagating through random medium is derived and the influence of coherent partiality on optical gradient force acting on dielectric particle rounded by a random media is investigated.
文摘Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.
文摘A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross-spectral density followed by the optimal approximation of the obtained results in the chosen basis of modal functions. The proposed definition is illustrated by the results of numerical simulation.
基金supported by Grants from the Research and Development Projects in Key Areas of Guangdong Province(2020B1111040001)the National Natural Science Foundation of China(NSFC)(81601534,62075042,61805038)Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory(2020B1212030010).
文摘We propose a novel retinal layer segmentation method to accurately segment 10 retinal layers in optical coherence tomography(OCT)images with intraretinal fluid.The method used a fan filter to enhance the linear information pertaining to retinal boundaries in an OCT image by reducing the effect of vessel shadows and fluid regions.A random forest classifier was employed to predict the location of the boundaries.Two novel methods of boundary redirection(SR)and similarity correction(SC)were combined to carry out boundary tracking and thereby accurately locate retinal layer boundaries.Experiments were performed on healthy controls and subjects with diabetic macular edema(DME).The proposed method required an average of 415 s for healthy controls and of 482 s for subjects with DME and achieved high accuracy for both groups of subjects.The proposed method requires a shorter running time than previous methods and also provides high accuracy.Thus,the proposed method may be a better choice for small training datasets.
基金supported by the National Natural Science Foundation of China under Grant Nos. U1509207, 61325019, and 61703304
文摘A solid-state green-light-emitting upconversion coherent random laser was realized by pumping macroporous erbium-doped lithium niobate with a 980 nm laser. The lasing threshold was determined to be about 40 k W∕cm~2.Above the threshold, the emission intensity increased sharply with the increasing pump intensity. Moreover, a narrow multi-peaks structure was observed in the green-light-emission band, and the positions of lasing lines were various at different angles. The results were the direct evidences of coherent random lasing emission from macroporous erbium-doped lithium niobate. These phenomena were attributed to the coexistence of upconversion emission and a multiple scattering feedback mechanism.
基金sponsored by the National Natural Science Foundation of China (Grant No. 41174114)the National Natural Science Foundation of China and China Petroleum & Chemical Corporation Co-funded Project (No. 40839905)
文摘Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new filtering method is proposed, which uses the generalized S transform which has good time-frequency concentration criterion to transform seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random noise. The model study shows that the high frequency component in the first IMF represents mainly noise, so clearing the first IMF can suppress noise. The EMD filtering method in the t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that depends on position, frequency, and truncation characteristics of high wave numbers. This filtering method takes local data time-frequency characteristic into consideration and is easy to perform. Compared with AR predictive filtering, the component that this method filters is highly localized and contains relatively fewer low wave numbers and the filter result does not show over-smoothing effects. Real data processing proves that the EMD filtering method in the t-f-x domain after generalized S transform can effectively suppress random and coherent noise of steep dips.