Tunable coherent radiation of wavelength between 92 nm and 122 nm has been produced in molecular gases of N2, CO, H2 and CH4 by resonant and nonresonant third harmonic generation. Factors with respect to the frequency...Tunable coherent radiation of wavelength between 92 nm and 122 nm has been produced in molecular gases of N2, CO, H2 and CH4 by resonant and nonresonant third harmonic generation. Factors with respect to the frequency conversion efficiency, including the line strength of the nonlinear susceptibility, the density of the media and the phase-matching, are discussed. By analyzing the characteristics of the four-wave mixing spectra in molecular gases, some physical parameters and the population of the energy levels are obtained. This indicates that nonlinear optical frequency conversion process provides a useful method to study the structure and spectra of molecules.展开更多
This paper presents a method of generating terahertz (THz) coherent transition radiation (CTR) from picosecond ultrashort electron bunches including single and train bunches, which are produced by a photocathode r...This paper presents a method of generating terahertz (THz) coherent transition radiation (CTR) from picosecond ultrashort electron bunches including single and train bunches, which are produced by a photocathode radio frequency gun. The radiation characteristics of THz CTR including formation factor and energy spectrum are analysed in detail. With the help of a 2-dimensional particle-in-cell simulation, the radiation characteristics including power, energy and magnetic field are analysed. The results show that the radiation frequency can be adjusted by tuning the repetition frequency of the train bunch and the energy can be enhanced with the train bunches.展开更多
The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum...The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum to free air is tested. The compact measurement system which can simultaneously test the THz wave power and frequency is built and proofed. With the help of improved Martin-Puplett interferometer and Kramers-Krong transform, the longitudinal bunch length is measured. The results show that the peak power of THz radiation wave is more than 80 kW, and its radiation frequency is from 0.1 THz to 1.5 THz.展开更多
A method for investigating the optical properties of human tissues is suggested.The method is based on the measurement of Cherenkov radiation produced by relativistic electrons passing through the tissue.Monte-Carlo s...A method for investigating the optical properties of human tissues is suggested.The method is based on the measurement of Cherenkov radiation produced by relativistic electrons passing through the tissue.Monte-Carlo simulation of visible photon emission and propagation is carried out taking into account multiple electron and photon scattering processes.Sensitivity of the Cherenkov radiation to the optical characteristics of human tissues is demonstrated.展开更多
The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr...The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature.展开更多
Surface plasmon polaritons'(SPPs')frequency blue shift is observed in finite-difference time-domain(FDTD)simulation of parallel electron excitation Au bulk structure.Comparing with cold dispersion of SPPs,an o...Surface plasmon polaritons'(SPPs')frequency blue shift is observed in finite-difference time-domain(FDTD)simulation of parallel electron excitation Au bulk structure.Comparing with cold dispersion of SPPs,an obvious frequency blue shift is obtained in low confinement region excitation simulation results.Then,according to SPPs'transverse attenuation characteristics,the excited frequency mode instead of cold dispersion corresponding frequency mode matches it.Thence,this excited mode is confirmed to be SPPs'mode.As is well known the lower the frequency,the smaller the confinement factor is and the lower the excitation efficiency,the wider the bandwidth of excited SPPs is.And considering the attenuation in whole structure,the excited surface field contains attenuation signal.In a low confinement factor region,the higher the SPPs'frequency,the higher the excitation efficiency is,while broadband frequency information obtained in attenuation signal provides high frequency information in stimulation signal.Thence,in the beam-wave interaction,as the signal oscillation time increases,the frequency of the oscillation field gradually increases.Thus,compared with cold dispersion,the frequency of excited SPP is blueshifted This hypothesis is verified by monitoring the time domain signal of excited field in low and high confinement factor regions and comparing them.Then,this frequency-blue shift is confirmed to have commonality of SPPs,which is independent of SPPs'material and structure.Finally,this frequency-blue shift is confirmed in an attenuated total reflection(ATR)experiment.Owing to frequency dependence of most of SPPs'devices,such as coherent enhancement radiation and enhancement transmission devices,the frequency-blue shift presented here is of great influence in the SPPs applications.展开更多
We present examples of a controlled numerical experiment that contribute towards understanding of the physical phenomena that lead to the reduction of coherency of strong earthquake ground motion.We show examples for ...We present examples of a controlled numerical experiment that contribute towards understanding of the physical phenomena that lead to the reduction of coherency of strong earthquake ground motion.We show examples for separation distance of 100 m between the two points on the ground surface,which is in the range of engineering interest.Our examples illustrate the consequences of:(a)standing waves that result from interference of the incident and reflected waves from a near vertical contrast in material properties,(b)standing waves within a concave inhomogeneity(a semi-circular valley in our examples),and(c)smaller motions in the diffraction zone,behind the inhomogeneity.We show that it is possible to reduce coherency,to the extent observed for recorded strong earthquake ground motion,even by a single inclusion in a half space,for incident ground motion that is coherent.We also illustrate the combined effects of geometric spreading and finite fault width,superimposed on the otherwise dominating effects caused by interference.Our examples show reduction of coherence for specific angles of incident waves,while,for other angles of incidence,the coherence remains essentially equal to one.展开更多
The coherent synchrotron radiation (CSR) effect emittance dilution in high-brightness light sources and linear in a bending path plays an important role in transverse colliders, where the electron beams are of short...The coherent synchrotron radiation (CSR) effect emittance dilution in high-brightness light sources and linear in a bending path plays an important role in transverse colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam.展开更多
Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch trav- eling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation ...Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch trav- eling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m).展开更多
We present a design study of a free electron laser (FEL) oscillator for high power THz source experiments on the basis of the Shanghai femtosecond accelerator device. A circular groove guide is used as a new interac...We present a design study of a free electron laser (FEL) oscillator for high power THz source experiments on the basis of the Shanghai femtosecond accelerator device. A circular groove guide is used as a new interaction structure. Plane metal meshes are used as upstream and downstream mirrors of the resonator. The general design parameters are presented. We analyzed the spontaneous emission and stimulated emission in the oscillator using these parameters.展开更多
High-gain harmonic generation(HGHG) is effective to produce fully coherent free-electron laser(FEL) pulses for various scientific applications. Due to the limitation of seed lasers, HGHG typically operates at a low re...High-gain harmonic generation(HGHG) is effective to produce fully coherent free-electron laser(FEL) pulses for various scientific applications. Due to the limitation of seed lasers, HGHG typically operates at a low repetition rate.In this paper, a harmonic-enhanced HGHG scheme is proposed to relax the peak power requirement for the seed laser,which can therefore operate at megahertz and a higher repetition rate. Moreover, the setup of the scheme is compact and can be adopted in an existing single-stage HGHG facility to extend the shortest achievable wavelength. Simulations show that FEL emission at 13.5 nm(20th harmonic) can be obtained with a 270 nm, 1 MW(peak power) seed laser.展开更多
The echo-enabled harmonic generation (EEHG) scheme offers remarkable efficiency for generating high harmonic microbunching with a relatively small energy modulation. A proof of principle experiment of the EEHG schem...The echo-enabled harmonic generation (EEHG) scheme offers remarkable efficiency for generating high harmonic microbunching with a relatively small energy modulation. A proof of principle experiment of the EEHG scheme has been proposed at the Shanghai deep ultraviolet (SDUV) free electron laser (FEL) facility, where the 4th harmonic of the seed laser is amplified in the 9 m long radiator. To explore the advantages of the EEHG scheme, in this paper, a method of measuring the coherent high harmonic radiation of the radiator is proposed to investigate the electron beam microbunching corresponding to the 10th-20th harmonics of the seed laser. The principle of the proposed method, comparisons with existing methods and the simulation results are presented and discussed.展开更多
When an electron bunch is compressed in a chicane compressor, the CSR (coherent synchrotron radiation) will induce energy redistribution along the bunch. Such energy redistribution will affect the longitudinal emitt...When an electron bunch is compressed in a chicane compressor, the CSR (coherent synchrotron radiation) will induce energy redistribution along the bunch. Such energy redistribution will affect the longitudinal emittance as a direct consequence. It will also excite betatron oscillation due to the chromatic transfer functions, and hence a transverse emittance change. So, it is indispensable for us to find a way to alleviate the CSR-caused emittance dilution and the bad result of chicane compressor in PKU-FEL.展开更多
The emittance growth induced by Coherent Synchrotron Radiation (CSR) is an important issue when electron bunches with short bunch length and high peak current are transported in a bending magnet. In this paper, a si...The emittance growth induced by Coherent Synchrotron Radiation (CSR) is an important issue when electron bunches with short bunch length and high peak current are transported in a bending magnet. In this paper, a single kick method is introduced that could give the same result as the R-matrix method, but is much easier to use. Then, with this method, an optics design technique is introduced that could minimize the emittance dilution within a single achromatic cell.展开更多
文摘Tunable coherent radiation of wavelength between 92 nm and 122 nm has been produced in molecular gases of N2, CO, H2 and CH4 by resonant and nonresonant third harmonic generation. Factors with respect to the frequency conversion efficiency, including the line strength of the nonlinear susceptibility, the density of the media and the phase-matching, are discussed. By analyzing the characteristics of the four-wave mixing spectra in molecular gases, some physical parameters and the population of the energy levels are obtained. This indicates that nonlinear optical frequency conversion process provides a useful method to study the structure and spectra of molecules.
基金Project supported by the Key Program of National Natural Science Foundation of China (Grant No.10705050)National Natural Science Foundation of China (Grant Nos.10875070,10805031,and 10905032)+1 种基金China Postdoctoral Science Foundation (Grant No.20080440031)China Postdoctoral Special Science Foundation (Grant No.200902088)
文摘This paper presents a method of generating terahertz (THz) coherent transition radiation (CTR) from picosecond ultrashort electron bunches including single and train bunches, which are produced by a photocathode radio frequency gun. The radiation characteristics of THz CTR including formation factor and energy spectrum are analysed in detail. With the help of a 2-dimensional particle-in-cell simulation, the radiation characteristics including power, energy and magnetic field are analysed. The results show that the radiation frequency can be adjusted by tuning the repetition frequency of the train bunch and the energy can be enhanced with the train bunches.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10905032 and 10975088)China Postdoctoral Science Foundation (Grant No.20080440031)the China Postdoctoral Special Science Foundation (Grant No.200902088)
文摘The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum to free air is tested. The compact measurement system which can simultaneously test the THz wave power and frequency is built and proofed. With the help of improved Martin-Puplett interferometer and Kramers-Krong transform, the longitudinal bunch length is measured. The results show that the peak power of THz radiation wave is more than 80 kW, and its radiation frequency is from 0.1 THz to 1.5 THz.
文摘A method for investigating the optical properties of human tissues is suggested.The method is based on the measurement of Cherenkov radiation produced by relativistic electrons passing through the tissue.Monte-Carlo simulation of visible photon emission and propagation is carried out taking into account multiple electron and photon scattering processes.Sensitivity of the Cherenkov radiation to the optical characteristics of human tissues is demonstrated.
基金supported by the National Key Research and Development Program of China under Grants No.2017YFA0701000,No.2018YFF01013001,and No.2020YFA0714001the Natural Science Foundation of China under Grants No.61988102,No.61921002,and No.62071108。
文摘The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0701000,2018YFF01013001,and 2020YFA0714001)the National Natural Science Foundation of China(Grant Nos.61988102,61921002,and 62071108).
文摘Surface plasmon polaritons'(SPPs')frequency blue shift is observed in finite-difference time-domain(FDTD)simulation of parallel electron excitation Au bulk structure.Comparing with cold dispersion of SPPs,an obvious frequency blue shift is obtained in low confinement region excitation simulation results.Then,according to SPPs'transverse attenuation characteristics,the excited frequency mode instead of cold dispersion corresponding frequency mode matches it.Thence,this excited mode is confirmed to be SPPs'mode.As is well known the lower the frequency,the smaller the confinement factor is and the lower the excitation efficiency,the wider the bandwidth of excited SPPs is.And considering the attenuation in whole structure,the excited surface field contains attenuation signal.In a low confinement factor region,the higher the SPPs'frequency,the higher the excitation efficiency is,while broadband frequency information obtained in attenuation signal provides high frequency information in stimulation signal.Thence,in the beam-wave interaction,as the signal oscillation time increases,the frequency of the oscillation field gradually increases.Thus,compared with cold dispersion,the frequency of excited SPP is blueshifted This hypothesis is verified by monitoring the time domain signal of excited field in low and high confinement factor regions and comparing them.Then,this frequency-blue shift is confirmed to have commonality of SPPs,which is independent of SPPs'material and structure.Finally,this frequency-blue shift is confirmed in an attenuated total reflection(ATR)experiment.Owing to frequency dependence of most of SPPs'devices,such as coherent enhancement radiation and enhancement transmission devices,the frequency-blue shift presented here is of great influence in the SPPs applications.
文摘We present examples of a controlled numerical experiment that contribute towards understanding of the physical phenomena that lead to the reduction of coherency of strong earthquake ground motion.We show examples for separation distance of 100 m between the two points on the ground surface,which is in the range of engineering interest.Our examples illustrate the consequences of:(a)standing waves that result from interference of the incident and reflected waves from a near vertical contrast in material properties,(b)standing waves within a concave inhomogeneity(a semi-circular valley in our examples),and(c)smaller motions in the diffraction zone,behind the inhomogeneity.We show that it is possible to reduce coherency,to the extent observed for recorded strong earthquake ground motion,even by a single inclusion in a half space,for incident ground motion that is coherent.We also illustrate the combined effects of geometric spreading and finite fault width,superimposed on the otherwise dominating effects caused by interference.Our examples show reduction of coherence for specific angles of incident waves,while,for other angles of incidence,the coherence remains essentially equal to one.
基金Supported by National Natural Science Foundation of China(11475202,11405187)Youth Innovation Promotion Association of Chinese Academy of Sciences(2015009)
文摘The coherent synchrotron radiation (CSR) effect emittance dilution in high-brightness light sources and linear in a bending path plays an important role in transverse colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam.
基金Supported by Chinese National Foundation of Natural Sciences(11205152,11375199)Fundamental Research Funds for the Central Universities(WK2310000042)Major State Basic Research Development Program of China(2011CB808301)
文摘Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch trav- eling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m).
基金Supported by Major State Basic Research Development Program of China (2002CB713600)
文摘We present a design study of a free electron laser (FEL) oscillator for high power THz source experiments on the basis of the Shanghai femtosecond accelerator device. A circular groove guide is used as a new interaction structure. Plane metal meshes are used as upstream and downstream mirrors of the resonator. The general design parameters are presented. We analyzed the spontaneous emission and stimulated emission in the oscillator using these parameters.
基金supported by the National Natural Science Foundation of China(No.11975039).
文摘High-gain harmonic generation(HGHG) is effective to produce fully coherent free-electron laser(FEL) pulses for various scientific applications. Due to the limitation of seed lasers, HGHG typically operates at a low repetition rate.In this paper, a harmonic-enhanced HGHG scheme is proposed to relax the peak power requirement for the seed laser,which can therefore operate at megahertz and a higher repetition rate. Moreover, the setup of the scheme is compact and can be adopted in an existing single-stage HGHG facility to extend the shortest achievable wavelength. Simulations show that FEL emission at 13.5 nm(20th harmonic) can be obtained with a 270 nm, 1 MW(peak power) seed laser.
基金Supported by Shanghai Natural Science Foundation (09JC1416900)1)
文摘The echo-enabled harmonic generation (EEHG) scheme offers remarkable efficiency for generating high harmonic microbunching with a relatively small energy modulation. A proof of principle experiment of the EEHG scheme has been proposed at the Shanghai deep ultraviolet (SDUV) free electron laser (FEL) facility, where the 4th harmonic of the seed laser is amplified in the 9 m long radiator. To explore the advantages of the EEHG scheme, in this paper, a method of measuring the coherent high harmonic radiation of the radiator is proposed to investigate the electron beam microbunching corresponding to the 10th-20th harmonics of the seed laser. The principle of the proposed method, comparisons with existing methods and the simulation results are presented and discussed.
基金National Nature Science Foundation of China (10276001)
文摘When an electron bunch is compressed in a chicane compressor, the CSR (coherent synchrotron radiation) will induce energy redistribution along the bunch. Such energy redistribution will affect the longitudinal emittance as a direct consequence. It will also excite betatron oscillation due to the chromatic transfer functions, and hence a transverse emittance change. So, it is indispensable for us to find a way to alleviate the CSR-caused emittance dilution and the bad result of chicane compressor in PKU-FEL.
文摘The emittance growth induced by Coherent Synchrotron Radiation (CSR) is an important issue when electron bunches with short bunch length and high peak current are transported in a bending magnet. In this paper, a single kick method is introduced that could give the same result as the R-matrix method, but is much easier to use. Then, with this method, an optics design technique is introduced that could minimize the emittance dilution within a single achromatic cell.