Measuring software quality requires software engineers to understand the system’s quality attributes and their measurements.The quality attribute is a qualitative property;however,the quantitative feature is needed f...Measuring software quality requires software engineers to understand the system’s quality attributes and their measurements.The quality attribute is a qualitative property;however,the quantitative feature is needed for software measurement,which is not considered during the development of most software systems.Many research studies have investigated different approaches for measuring software quality,but with no practical approaches to quantify and measure quality attributes.This paper proposes a software quality measurement model,based on a software interconnection model,to measure the quality of software components and the overall quality of the software system.Unlike most of the existing approaches,the proposed approach can be applied at the early stages of software development,to different architectural design models,and at different levels of system decomposition.This article introduces a software measurement model that uses a heuristic normalization of the software’s internal quality attributes,i.e.,coupling and cohesion,for software quality measurement.In this model,the quality of a software component is measured based on its internal strength and the coupling it exhibits with other component(s).The proposed model has been experimented with nine software engineering teams that have agreed to participate in the experiment during the development of their different software systems.The experiments have shown that coupling reduces the internal strength of the coupled components by the amount of coupling they exhibit,which degrades their quality and the overall quality of the software system.The introduced model can help in understanding the quality of software design.In addition,it identifies the locations in software design that exhibit unnecessary couplings that degrade the quality of the software systems,which can be eliminated.展开更多
Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primaril...Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primarily used to analyse the better software design quality,increase the reliability and reduced system software complexity.The complexity measurement of cohesion and coupling component to analyze the relationship between the component module.In this paper,proposed the component selection framework of Hexa-oval optimization algorithm for selecting the suitable components from the repository.It measures the interface density modules of coupling and cohesion in a modular software sys-tem.This cohesion measurement has been taken into two parameters for analyz-ing the result of complexity,with the help of low cohesion and high cohesion.In coupling measures between the component of inside parameters and outside parameters.Thefinal process of coupling and cohesion,the measured values were used for the average calculation of components parameter.This paper measures the complexity of direct and indirect interaction among the component as well as the proposed algorithm selecting the optimal component for the repository.The better result is observed for high cohesion and low coupling in compo-nent-based software engineering.展开更多
Individuals’perceptions,attitudes,and patterns of getting along with family members are important factors influencing Chinese people’s self-evaluation.The aim of this study was to investigate the effect of family co...Individuals’perceptions,attitudes,and patterns of getting along with family members are important factors influencing Chinese people’s self-evaluation.The aim of this study was to investigate the effect of family cohesion on depression and the role of perceived social support and intentional self-regulation in this association.A hypothesized model of the association of family cohesion,perceived social support,intentional self-regulation,and depression was examined.A convenience sampling method was used to survey 1,180 college students in Yunnan Province using self-report.Data were collected using the Family Cohesion Scale,the Perceived Social Support Scale,the Intentional Self-Regulation Scale,and the Center for Epidemiological Studies Depression Scale.The findings revealed low to moderate correlation between the variables studied.College students’family cohesion was a negative predictor of their depression.This association was also mediated by the knock-on effect of perceived social support and intentional self-regulation.These findings show how family cohesion affects college students’depressive status.Specifically,these results help demonstrate the importance of family cohesion,perceived social support,and intentional self-regulation in optimizing students’depression,which in turn can promote better psychological states.展开更多
BACKGROUND Depression is the most common mental illness in postpartum mothers,and the etiology of postpartum depression remains poorly understood.Over the past several decades,studies have reported that postpartum dep...BACKGROUND Depression is the most common mental illness in postpartum mothers,and the etiology of postpartum depression remains poorly understood.Over the past several decades,studies have reported that postpartum depression is caused by multiple factors,such as genetic,psychological,pregnancy,and environmental factors,with the family environment being an important environmental factor.The theory of family cohesion and adaptability put forward by Olson is a classic model that describes the level of family function.However,to date,this model has not been examined regarding its applicability to patients with postpartum depression.AIM To investigate the relationship between family cohesion and adaptability and the risk of postpartum depressive symptoms.METHODS We retrospectively analyzed 1446 patients admitted to the postpartum healthcare clinic of the Affiliated Foshan Maternity and Child Healthcare Hospital from April 2021 to December 2021.Patients were grouped according to whether postpartum depression symptoms were reported(symptoms,n=454;no symptoms,n=992).All patients completed the Edinburgh Postpartum Depression Scale and the Chinese version of the Family Cohesion and Adaptability Assessment Scale II.Baseline and clinical data were compared between groups.Univariate regression analysis was used to investigate the association between different types of family cohesion and postpartum depressive symptoms and the association between different family adaptability types and postpartum depressive symptoms.RESULTS After adjusting for age,education,occupation,gravidity,parity,and mode of delivery,disengaged[adjusted odds ratio(AOR)=3.36,95%CI:1.91-5.91],and separated(AOR=1.97,95%CI:1.34-2.90)family cohesion types showed a higher risk of postpartum depression than the connection type,whereas the enmeshed type(AOR=0.38,95%CI:0.28-0.51)protected against postpartum depressive symptoms.Rigid(AOR=4.41,95%CI:3.02-6.43)and structured families(AOR=1.88,95%CI:1.34-2.63)had a higher risk of postpartum depressive symptoms than flexible families,whereas chaotic families(AOR=0.35,95%CI:0.24-0.51)protected against postpartum depressive symptoms.CONCLUSION Family cohesion and adaptability are influencing factors for postpartum depressive symptoms,with higher family cohesion and adaptability being associated with a lower risk of postpartum depressive symptoms.展开更多
The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly ...The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm.展开更多
This paper suggests that a single class rather than methods should be used as the slice scope to compute class cohesion. First, for a given attribute, the statements in all methods that last define the attribute are c...This paper suggests that a single class rather than methods should be used as the slice scope to compute class cohesion. First, for a given attribute, the statements in all methods that last define the attribute are computed. Then, the forward and backward data slices for this attribute are generated by using the class as the slice scope and are combined to compute the corresponding class data slice. Finally, the class cohesion is computed based on all class data slices for the attributes. Compared to traditional cohesion metrics that use methods as the slice scope, the proposed metrics that use a single class as slice scope take into account the possible interactions between the methods. The experimental results show that class cohesion can be more accurately measured when using the class as the slice scope.展开更多
BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been publishe...BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been published in the past decades,the pathogenesis,associated risk factors,and potential implications on treatment are still poorly understood.Besides the low incidence,historically confusing histological criteria have resulted in confusing data.Nevertheless,the rising incidence of CSRCC along with relatively young age at presentation and associated dismal prognosis,highlight the actual interest to synthesize the known literature regarding CSRCC.AIM To provide an updated overview of risk factors,prognosis,and management of CSRCC.METHODS A literature search in the MEDLINE/PubMed database was conducted with the following search terms used:‘Signet ring cell carcinoma’and‘colorectal’.Studies in English language,published after January 1980,were included.Studies included in the qualitative synthesis were evaluated for content concerning epidemiology,risk factors,and clinical,diagnostic,histological,and molecular features,as well as metastatic pattern and therapeutic management.If possible,presented data was extracted in order to present a more detailed overview of the literature.RESULTS In total,67 articles were included for qualitative analysis,of which 54 were eligible for detailed data extraction.CSRCC has a reported incidence between 0.1%-2.4%and frequently presents with advanced disease stage at the time of diagnosis.CSRCC is associated with an impaired overall survival(5-year OS:0%-46%)and a worse stagecorrected outcome compared to mucinous and not otherwise specified adenocarcinoma.The systematic use of exploratory laparoscopy to determine the presence of peritoneal metastases has been advised.Surgery is the mainstay of treatment,although the rates of curative resection in CSRCC(21%-82%)are lower compared to those in other histological types.In case of peritoneal metastasis,cytoreductive surgery with hyperthermic intraperitoneal chemotherapy should only be proposed in selected patients.CONCLUSION CSRCC is a rare clinical entity most often characterized by young age and advanced disease at presentation.As such,diagnostic modalities and therapeutic approach should be tailored accordingly.展开更多
Urban cohesion is a new development phenomenon of urbanization, requires further study in both practices and theories. In this study, the connotation, development premise and existing problems of urbanization have bee...Urban cohesion is a new development phenomenon of urbanization, requires further study in both practices and theories. In this study, the connotation, development premise and existing problems of urbanization have been primarily explored, to obtain useful ideas.展开更多
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani...Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.展开更多
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive...Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.展开更多
Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und...Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.展开更多
The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the...The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.展开更多
Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fideli...Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fidelity simulation for this issue,particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones,remains significantly constrained.In response,this study introduces an integrated algorithmwithin the finite element framework,merging a coupled cohesive zone model(CZM)with the nonlinear augmented finite elementmethod(N-AFEM).The coupledCZMcomprehensively describes tension-compression and compressionshear failure behaviors in cohesive,frictional materials,while the N-AFEM allows nonlinear coupled intraelement discontinuities without necessitating extra nodes or nodal DoFs.Following CZM validation using existing experimental data,this integrated algorithm was utilized to analyze soil slope failure mechanisms involving a specific tensile strength and to assess the impact of mechanical parameters(e.g.,tensile strength,weighting factor,modulus)in soils.展开更多
The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,...The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress.展开更多
The gradual increase in shipping and drilling activities in the Arctic regions has resulted in the increased importance of studying the structural safety of polar ships in various ice conditions.Rafted ice refers to a...The gradual increase in shipping and drilling activities in the Arctic regions has resulted in the increased importance of studying the structural safety of polar ships in various ice conditions.Rafted ice refers to a type of accumulated and overlapped sea ice;it is driven by external forces,such as wind and waves,and may exert high loads on ships and threaten their structural safety.Therefore,the properties of rafted ice and the construction of numerical models should be studied before exploring the interaction and collision between ships and rafted ice.Based on the nonlinear finite-element method,this paper introduces the cohesive element model for the simulation of rafted ice.The interaction between ships and rafted ice is studied,and the ice force of the hull is obtained.Numerical simulation results are compared with model test findings,and the effectiveness of the cohesive element method in the construction of the model of rafted ice materials is verified.On this basis,a multilayer rafted ice model is constructed,and its interaction with the ship is studied.The research unveils that rafted ice parts impede crack generation and slow down crack propagation to a certain extent.展开更多
The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers an...The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.展开更多
文摘Measuring software quality requires software engineers to understand the system’s quality attributes and their measurements.The quality attribute is a qualitative property;however,the quantitative feature is needed for software measurement,which is not considered during the development of most software systems.Many research studies have investigated different approaches for measuring software quality,but with no practical approaches to quantify and measure quality attributes.This paper proposes a software quality measurement model,based on a software interconnection model,to measure the quality of software components and the overall quality of the software system.Unlike most of the existing approaches,the proposed approach can be applied at the early stages of software development,to different architectural design models,and at different levels of system decomposition.This article introduces a software measurement model that uses a heuristic normalization of the software’s internal quality attributes,i.e.,coupling and cohesion,for software quality measurement.In this model,the quality of a software component is measured based on its internal strength and the coupling it exhibits with other component(s).The proposed model has been experimented with nine software engineering teams that have agreed to participate in the experiment during the development of their different software systems.The experiments have shown that coupling reduces the internal strength of the coupled components by the amount of coupling they exhibit,which degrades their quality and the overall quality of the software system.The introduced model can help in understanding the quality of software design.In addition,it identifies the locations in software design that exhibit unnecessary couplings that degrade the quality of the software systems,which can be eliminated.
基金We deeply acknowledge Taif University for Supporting this research through Taif University Researchers Supporting Project number(TURSP-2020/231),Taif University,Taif,Saudi Arabia.
文摘Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primarily used to analyse the better software design quality,increase the reliability and reduced system software complexity.The complexity measurement of cohesion and coupling component to analyze the relationship between the component module.In this paper,proposed the component selection framework of Hexa-oval optimization algorithm for selecting the suitable components from the repository.It measures the interface density modules of coupling and cohesion in a modular software sys-tem.This cohesion measurement has been taken into two parameters for analyz-ing the result of complexity,with the help of low cohesion and high cohesion.In coupling measures between the component of inside parameters and outside parameters.Thefinal process of coupling and cohesion,the measured values were used for the average calculation of components parameter.This paper measures the complexity of direct and indirect interaction among the component as well as the proposed algorithm selecting the optimal component for the repository.The better result is observed for high cohesion and low coupling in compo-nent-based software engineering.
基金This study was supported by the Youth Project of Yunnan Provincial Philosophy and Social Science Planning,Project No.QN2018055.
文摘Individuals’perceptions,attitudes,and patterns of getting along with family members are important factors influencing Chinese people’s self-evaluation.The aim of this study was to investigate the effect of family cohesion on depression and the role of perceived social support and intentional self-regulation in this association.A hypothesized model of the association of family cohesion,perceived social support,intentional self-regulation,and depression was examined.A convenience sampling method was used to survey 1,180 college students in Yunnan Province using self-report.Data were collected using the Family Cohesion Scale,the Perceived Social Support Scale,the Intentional Self-Regulation Scale,and the Center for Epidemiological Studies Depression Scale.The findings revealed low to moderate correlation between the variables studied.College students’family cohesion was a negative predictor of their depression.This association was also mediated by the knock-on effect of perceived social support and intentional self-regulation.These findings show how family cohesion affects college students’depressive status.Specifically,these results help demonstrate the importance of family cohesion,perceived social support,and intentional self-regulation in optimizing students’depression,which in turn can promote better psychological states.
基金Supported by Foundation of Bureau of Science and Technology of Foshan City,No.2020001005566。
文摘BACKGROUND Depression is the most common mental illness in postpartum mothers,and the etiology of postpartum depression remains poorly understood.Over the past several decades,studies have reported that postpartum depression is caused by multiple factors,such as genetic,psychological,pregnancy,and environmental factors,with the family environment being an important environmental factor.The theory of family cohesion and adaptability put forward by Olson is a classic model that describes the level of family function.However,to date,this model has not been examined regarding its applicability to patients with postpartum depression.AIM To investigate the relationship between family cohesion and adaptability and the risk of postpartum depressive symptoms.METHODS We retrospectively analyzed 1446 patients admitted to the postpartum healthcare clinic of the Affiliated Foshan Maternity and Child Healthcare Hospital from April 2021 to December 2021.Patients were grouped according to whether postpartum depression symptoms were reported(symptoms,n=454;no symptoms,n=992).All patients completed the Edinburgh Postpartum Depression Scale and the Chinese version of the Family Cohesion and Adaptability Assessment Scale II.Baseline and clinical data were compared between groups.Univariate regression analysis was used to investigate the association between different types of family cohesion and postpartum depressive symptoms and the association between different family adaptability types and postpartum depressive symptoms.RESULTS After adjusting for age,education,occupation,gravidity,parity,and mode of delivery,disengaged[adjusted odds ratio(AOR)=3.36,95%CI:1.91-5.91],and separated(AOR=1.97,95%CI:1.34-2.90)family cohesion types showed a higher risk of postpartum depression than the connection type,whereas the enmeshed type(AOR=0.38,95%CI:0.28-0.51)protected against postpartum depressive symptoms.Rigid(AOR=4.41,95%CI:3.02-6.43)and structured families(AOR=1.88,95%CI:1.34-2.63)had a higher risk of postpartum depressive symptoms than flexible families,whereas chaotic families(AOR=0.35,95%CI:0.24-0.51)protected against postpartum depressive symptoms.CONCLUSION Family cohesion and adaptability are influencing factors for postpartum depressive symptoms,with higher family cohesion and adaptability being associated with a lower risk of postpartum depressive symptoms.
基金support from the Natural Science Foundation of China(Grant Nos.41941018,U21A20153,42177140).
文摘The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm.
基金The National Natural Science Foundation of China(No.60425206,60633010)the High Technology Research and Development Program of Jiangsu Province(No.BG2005032)
文摘This paper suggests that a single class rather than methods should be used as the slice scope to compute class cohesion. First, for a given attribute, the statements in all methods that last define the attribute are computed. Then, the forward and backward data slices for this attribute are generated by using the class as the slice scope and are combined to compute the corresponding class data slice. Finally, the class cohesion is computed based on all class data slices for the attributes. Compared to traditional cohesion metrics that use methods as the slice scope, the proposed metrics that use a single class as slice scope take into account the possible interactions between the methods. The experimental results show that class cohesion can be more accurately measured when using the class as the slice scope.
文摘BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been published in the past decades,the pathogenesis,associated risk factors,and potential implications on treatment are still poorly understood.Besides the low incidence,historically confusing histological criteria have resulted in confusing data.Nevertheless,the rising incidence of CSRCC along with relatively young age at presentation and associated dismal prognosis,highlight the actual interest to synthesize the known literature regarding CSRCC.AIM To provide an updated overview of risk factors,prognosis,and management of CSRCC.METHODS A literature search in the MEDLINE/PubMed database was conducted with the following search terms used:‘Signet ring cell carcinoma’and‘colorectal’.Studies in English language,published after January 1980,were included.Studies included in the qualitative synthesis were evaluated for content concerning epidemiology,risk factors,and clinical,diagnostic,histological,and molecular features,as well as metastatic pattern and therapeutic management.If possible,presented data was extracted in order to present a more detailed overview of the literature.RESULTS In total,67 articles were included for qualitative analysis,of which 54 were eligible for detailed data extraction.CSRCC has a reported incidence between 0.1%-2.4%and frequently presents with advanced disease stage at the time of diagnosis.CSRCC is associated with an impaired overall survival(5-year OS:0%-46%)and a worse stagecorrected outcome compared to mucinous and not otherwise specified adenocarcinoma.The systematic use of exploratory laparoscopy to determine the presence of peritoneal metastases has been advised.Surgery is the mainstay of treatment,although the rates of curative resection in CSRCC(21%-82%)are lower compared to those in other histological types.In case of peritoneal metastasis,cytoreductive surgery with hyperthermic intraperitoneal chemotherapy should only be proposed in selected patients.CONCLUSION CSRCC is a rare clinical entity most often characterized by young age and advanced disease at presentation.As such,diagnostic modalities and therapeutic approach should be tailored accordingly.
基金Supported by Key Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-342,KZCX2-YW-321)Key Project of National Natural Science Foundation (40635030)~~
文摘Urban cohesion is a new development phenomenon of urbanization, requires further study in both practices and theories. In this study, the connotation, development premise and existing problems of urbanization have been primarily explored, to obtain useful ideas.
基金financially supported by the National Natural Science Foundation of China(Nos.42001053 and 42277147)the General Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202352363)the University Natural Science Foundation of Jiangsu Province(No.23KJD130001)。
文摘Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.
基金support from the National Key R&D plan(Grant No.2022YFC3004303)the National Natural Science Foundation of China(Grant No.42107161)+3 种基金the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04)the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(sklhse-2023-C-01)the Open Research Fund Program of Key Laboratory of the Hydrosphere of the Ministry of Water Resources(mklhs-2023-04)the China Three Gorges Corporation(XLD/2117).
文摘Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.51839003 and 42207221).
文摘Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.
基金financial support by the National Key Research and Development Program of China (No.2022YFE0129800)the National Natural Science Foundation of China (No.52074311)。
文摘The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.
基金supported by Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LQ23E080001 and LTGG23E080002National Natural Science Foundation of China under Grant No.12272334Zhejiang Engineering Research Center of Intelligent Urban Infrastructure(No.IUI2023-YB-07).
文摘Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fidelity simulation for this issue,particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones,remains significantly constrained.In response,this study introduces an integrated algorithmwithin the finite element framework,merging a coupled cohesive zone model(CZM)with the nonlinear augmented finite elementmethod(N-AFEM).The coupledCZMcomprehensively describes tension-compression and compressionshear failure behaviors in cohesive,frictional materials,while the N-AFEM allows nonlinear coupled intraelement discontinuities without necessitating extra nodes or nodal DoFs.Following CZM validation using existing experimental data,this integrated algorithm was utilized to analyze soil slope failure mechanisms involving a specific tensile strength and to assess the impact of mechanical parameters(e.g.,tensile strength,weighting factor,modulus)in soils.
基金supported by the National Natural Science Foundation of China(Grant Nos.52108168&52208398).
文摘The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress.
基金The National Natural Science Foundation of China(Grant Nos.52192693,52192690,51979051,51979056 and U20A20327)the National Key Research and Development Program of China(Grant No.2021YFC2803400)。
文摘The gradual increase in shipping and drilling activities in the Arctic regions has resulted in the increased importance of studying the structural safety of polar ships in various ice conditions.Rafted ice refers to a type of accumulated and overlapped sea ice;it is driven by external forces,such as wind and waves,and may exert high loads on ships and threaten their structural safety.Therefore,the properties of rafted ice and the construction of numerical models should be studied before exploring the interaction and collision between ships and rafted ice.Based on the nonlinear finite-element method,this paper introduces the cohesive element model for the simulation of rafted ice.The interaction between ships and rafted ice is studied,and the ice force of the hull is obtained.Numerical simulation results are compared with model test findings,and the effectiveness of the cohesive element method in the construction of the model of rafted ice materials is verified.On this basis,a multilayer rafted ice model is constructed,and its interaction with the ship is studied.The research unveils that rafted ice parts impede crack generation and slow down crack propagation to a certain extent.
基金financial support from the National Key R&D Program of China(Grant No.2020YFA0711802).
文摘The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.