Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studi...Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studies on coke drums in the form of bulging and the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully devel- oped to allow performing thermal-mechanical fatigue (TMF) test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.展开更多
One of the primary reasons leading to bulging and cracking in a coke drum is the severe temperature gradient due to cyclic temperature variation. Based on the twodimensional heat conduction theory, an analytical solut...One of the primary reasons leading to bulging and cracking in a coke drum is the severe temperature gradient due to cyclic temperature variation. Based on the twodimensional heat conduction theory, an analytical solution of the transient temperature field in the coke drum is obtained, which is different from the known FEM results. The length of the coke drum is considered finite. The dynamic boundary conditions caused by fluid uninterrupted rising in oiling and watering stages are simulated with the iteration method. Numerical results show that the present theoretical model can accurately describe basic features of the transient temperature field in the coke drum. Effects of the geometry of the coke drum and the rising velocity of quench water on the axial temperature gradient are also discussed.展开更多
The skirt-to-shell junction weld on coke drums is susceptible to fatigue failure due to severe thermal cyclic stresses. One method to decrease junction stress is to add slots near the top of the skirt, thereby reducin...The skirt-to-shell junction weld on coke drums is susceptible to fatigue failure due to severe thermal cyclic stresses. One method to decrease junction stress is to add slots near the top of the skirt, thereby reducing the local stiffness close to the weld. The most common skirt slot design is thin relative to its circumferential spacing. A new slot design, which is significantly wider, is proposed. In this study, thermal-mechanical elastoplastic 3-D finite element models of coke drums are created to analyze the effect of different skirt designs on the stress/strain field near the shell-to-skirt junction weld, as well as any other critical stress locations in the overall skirt design. The results confirm that the inclusion of the conventional slot design effectively reduces stress in the junction weld. However, it has also been found that the critical stress location migrates from the shell-to-skirt junction weld to the slot ends. A method is used to estimate the fatigue life near the critical areas of each skirt slot design. It is found that wider skirt slots provide a significant improvement on fatigue life in the weld and slot area.展开更多
对焦炭塔材料15Cr Mo R在20℃、200℃、300℃及400℃下进行单轴拉伸试验与单轴棘轮效应试验,利用OW-II随动强化模型对材料的棘轮应变进行预测,模型能较好地预测材料稳定段的棘轮应变率。运用动态坐标系法对焦炭塔进油及进水两种工况进...对焦炭塔材料15Cr Mo R在20℃、200℃、300℃及400℃下进行单轴拉伸试验与单轴棘轮效应试验,利用OW-II随动强化模型对材料的棘轮应变进行预测,模型能较好地预测材料稳定段的棘轮应变率。运用动态坐标系法对焦炭塔进油及进水两种工况进行瞬态温度场分析,确定轴向移动温差及其特征量,为焦炭塔循环塑性分析确定简化的温差特征载荷。对焦炭塔筒体进油生焦及进水冷焦两种工况进行循环塑性分析,发现进油及进水轴向温差渐变范围下对齐时结构具有更大的棘轮应变率,内压循环的同时作用会增大结构的棘轮应变。通过参数化计算,确定焦炭塔结构的棘轮边界,当进水轴向温差高度较小时棘轮边界受内压循环的影响较大。展开更多
基金supported by a Collaborative Research and Development (CRD) Grants of The National Science and Engineering Research Council (NSERC) of Canada (CRD 350634-07 and CRDPJ 403054-10)
文摘Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studies on coke drums in the form of bulging and the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully devel- oped to allow performing thermal-mechanical fatigue (TMF) test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.
基金Project supported by the National Natural Science Foundation of China (Nos. 10372035 and10902043)the Key Laboratory of Diagnosis of Fault in Engineering Structures of Guangdong Province of China
文摘One of the primary reasons leading to bulging and cracking in a coke drum is the severe temperature gradient due to cyclic temperature variation. Based on the twodimensional heat conduction theory, an analytical solution of the transient temperature field in the coke drum is obtained, which is different from the known FEM results. The length of the coke drum is considered finite. The dynamic boundary conditions caused by fluid uninterrupted rising in oiling and watering stages are simulated with the iteration method. Numerical results show that the present theoretical model can accurately describe basic features of the transient temperature field in the coke drum. Effects of the geometry of the coke drum and the rising velocity of quench water on the axial temperature gradient are also discussed.
文摘The skirt-to-shell junction weld on coke drums is susceptible to fatigue failure due to severe thermal cyclic stresses. One method to decrease junction stress is to add slots near the top of the skirt, thereby reducing the local stiffness close to the weld. The most common skirt slot design is thin relative to its circumferential spacing. A new slot design, which is significantly wider, is proposed. In this study, thermal-mechanical elastoplastic 3-D finite element models of coke drums are created to analyze the effect of different skirt designs on the stress/strain field near the shell-to-skirt junction weld, as well as any other critical stress locations in the overall skirt design. The results confirm that the inclusion of the conventional slot design effectively reduces stress in the junction weld. However, it has also been found that the critical stress location migrates from the shell-to-skirt junction weld to the slot ends. A method is used to estimate the fatigue life near the critical areas of each skirt slot design. It is found that wider skirt slots provide a significant improvement on fatigue life in the weld and slot area.
文摘对焦炭塔材料15Cr Mo R在20℃、200℃、300℃及400℃下进行单轴拉伸试验与单轴棘轮效应试验,利用OW-II随动强化模型对材料的棘轮应变进行预测,模型能较好地预测材料稳定段的棘轮应变率。运用动态坐标系法对焦炭塔进油及进水两种工况进行瞬态温度场分析,确定轴向移动温差及其特征量,为焦炭塔循环塑性分析确定简化的温差特征载荷。对焦炭塔筒体进油生焦及进水冷焦两种工况进行循环塑性分析,发现进油及进水轴向温差渐变范围下对齐时结构具有更大的棘轮应变率,内压循环的同时作用会增大结构的棘轮应变。通过参数化计算,确定焦炭塔结构的棘轮边界,当进水轴向温差高度较小时棘轮边界受内压循环的影响较大。