It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and beha...It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and behaviour of bitumen and its gas oil products is needed. In this work, the gas oil samples are fractionated in an attempt to isolate and identify the problematic molecular species for hydrotreating. It is found that the major nitrogen sources in coker gas oils are associated with relatively small pentane insoluble species and an even smaller, highly polar, hexane insoluble species. Structural information obtained for these fractions indicates that they are formed during the cracking of resin molecules. Nitrogen speciation shows that the pyrroles are the primary nitrogen type, with pyridines also being an important species. Both nitrogen species are undesirable in the hydrotreating process. Pyrroles in particular are subject to polymerisation, producing gums and sediments that foul filters and other equipment while pyridines can directly deactivate the hydrotreating catalyst.展开更多
Coker gas oil (CGO) is a poor-quality feed- stock for ftuidized bed catalytic cracking (FCC) or hydrocracking. The pretreatment of CGO, especially hydrotreating, can significantly improve the product quality and p...Coker gas oil (CGO) is a poor-quality feed- stock for ftuidized bed catalytic cracking (FCC) or hydrocracking. The pretreatment of CGO, especially hydrotreating, can significantly improve the product quality and protect the catalyst. In this work, we studied the hydrodesulfurization (HDS) of CGO in a slurry reactor. All the experiments were carried out in an autoclave using a NiMo/A1203 catalyst at reaction temperature 340℃- 400℃, pressure 6-10 MPa, and stirring speed 800 r. mn^-1, with hydrogen-to-oil ratio in the range of 500-1500. The effects of the operating parameters on the desulfurization ratio were investigated and discussed. A macro reaction kinetic model was established for the HDS of CGO in the slurry reactor.展开更多
Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine i...Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine its origin, the TIM must first be separated from CHGO for characterization. Two techniques are described to accomplish this goal. In the ultra-centrifugation approach used in this work, CHGO is blended with a miscible liquid and centrifuged under 366000 G (gravity) force. Through this procedure toluene and hexane diluents yielded TIM contents of 24μg·g-1 and 88μg·g-1 respectively. In an alternative simplified procedure, the initial ultra-centrifugation step is omitted. Several different solvents are evaluated for use as diluents but, in each case, toluene is still used in the subsequent washing steps. TIM contents determined by this method range from 23 to about 200μg·g-1. The amount of TIM separated by means of this method depends primarily on the initial diluent used. Other conditions, such as diluent-oil ratio, water-oil ratio, mixing time, temperature and water pH value, are also studied.展开更多
In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectromet...In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) combined with the Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that three basic nitrogencompounds, N1 (in which a molecule contains one nitrogen atom, similarly hereinafter), N1O1 and N2, are identified bytheir positive-ion mass spectra, and three non-basic nitrogen compounds, N1, N1O1, and N1S1, are characterized by theirnegative-ion mass spectra. Among these nitrogen compounds, the N1 class species are the most predominant. Combinedwith the data of ESI FT-ICR MS and FT-IR, the basic N1 class species are likely alkyl quinolines, naphthenic quinolines,acridines, benzonacridines, while the abundant non-basic N1 class species are derivatives of benzocarbazole. In comparisonwith CGO, the N1 basic nitrogen compounds in VR exhibit a higher average degree of condensation and have much longeralkyl side chains.展开更多
文摘It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and behaviour of bitumen and its gas oil products is needed. In this work, the gas oil samples are fractionated in an attempt to isolate and identify the problematic molecular species for hydrotreating. It is found that the major nitrogen sources in coker gas oils are associated with relatively small pentane insoluble species and an even smaller, highly polar, hexane insoluble species. Structural information obtained for these fractions indicates that they are formed during the cracking of resin molecules. Nitrogen speciation shows that the pyrroles are the primary nitrogen type, with pyridines also being an important species. Both nitrogen species are undesirable in the hydrotreating process. Pyrroles in particular are subject to polymerisation, producing gums and sediments that foul filters and other equipment while pyridines can directly deactivate the hydrotreating catalyst.
文摘Coker gas oil (CGO) is a poor-quality feed- stock for ftuidized bed catalytic cracking (FCC) or hydrocracking. The pretreatment of CGO, especially hydrotreating, can significantly improve the product quality and protect the catalyst. In this work, we studied the hydrodesulfurization (HDS) of CGO in a slurry reactor. All the experiments were carried out in an autoclave using a NiMo/A1203 catalyst at reaction temperature 340℃- 400℃, pressure 6-10 MPa, and stirring speed 800 r. mn^-1, with hydrogen-to-oil ratio in the range of 500-1500. The effects of the operating parameters on the desulfurization ratio were investigated and discussed. A macro reaction kinetic model was established for the HDS of CGO in the slurry reactor.
基金CHGO sample was provided by Synrude Canada Ltd.Plant.
文摘Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine its origin, the TIM must first be separated from CHGO for characterization. Two techniques are described to accomplish this goal. In the ultra-centrifugation approach used in this work, CHGO is blended with a miscible liquid and centrifuged under 366000 G (gravity) force. Through this procedure toluene and hexane diluents yielded TIM contents of 24μg·g-1 and 88μg·g-1 respectively. In an alternative simplified procedure, the initial ultra-centrifugation step is omitted. Several different solvents are evaluated for use as diluents but, in each case, toluene is still used in the subsequent washing steps. TIM contents determined by this method range from 23 to about 200μg·g-1. The amount of TIM separated by means of this method depends primarily on the initial diluent used. Other conditions, such as diluent-oil ratio, water-oil ratio, mixing time, temperature and water pH value, are also studied.
文摘In this study, the heteroatom classes and molecular structures of nitrogen compounds in vacuum residue arecharacterized by the electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) combined with the Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that three basic nitrogencompounds, N1 (in which a molecule contains one nitrogen atom, similarly hereinafter), N1O1 and N2, are identified bytheir positive-ion mass spectra, and three non-basic nitrogen compounds, N1, N1O1, and N1S1, are characterized by theirnegative-ion mass spectra. Among these nitrogen compounds, the N1 class species are the most predominant. Combinedwith the data of ESI FT-ICR MS and FT-IR, the basic N1 class species are likely alkyl quinolines, naphthenic quinolines,acridines, benzonacridines, while the abundant non-basic N1 class species are derivatives of benzocarbazole. In comparisonwith CGO, the N1 basic nitrogen compounds in VR exhibit a higher average degree of condensation and have much longeralkyl side chains.