Objective The study aimed to estimate the benchmark dose(BMD)of coke oven emissions(COEs)exposure based on mitochondrial damage with the mitochondrial DNA copy number(mtDNAcn)as a biomarker.Methods A total of 782 subj...Objective The study aimed to estimate the benchmark dose(BMD)of coke oven emissions(COEs)exposure based on mitochondrial damage with the mitochondrial DNA copy number(mtDNAcn)as a biomarker.Methods A total of 782 subjects were recruited,including 238 controls and 544 exposed workers.The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction.Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95%confidence lower limit(BMDL).Results The mtDNAcn of the exposure group was lower than that of the control group(0.60±0.29 vs.1.03±0.31;P<0.001).A dose-response relationship was shown between the mtDNAcn damage and COEs.Using the Benchmark Dose Software,the occupational exposure limits(OELs)for COEs exposure in males was 0.00190 mg/m^(3).The OELs for COEs exposure using the BBMD were 0.00170 mg/m^(3)for the total population,0.00158 mg/m^(3)for males,and 0.00174 mg/m^(3)for females.In possible risk obtained from animal studies(PROAST),the OELs of the total population,males,and females were 0.00184,0.00178,and 0.00192 mg/m^(3),respectively.Conclusion Based on our conservative estimate,the BMDL of mitochondrial damage caused by COEs is0.002 mg/m^(3).This value will provide a benchmark for determining possible OELs.展开更多
Hydrogen amplification from simulated hot coke oven gas (HCOG) was investigated in a BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) membrane reactor combined with a Ru-Ni/Mg(Al)O catalyst by the partial oxidation of hydrocarbon...Hydrogen amplification from simulated hot coke oven gas (HCOG) was investigated in a BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) membrane reactor combined with a Ru-Ni/Mg(Al)O catalyst by the partial oxidation of hydrocarbon compounds under atmospheric pressure. Under optimized reaction conditions, the dense oxygen permeable membrane had an oxygen permeation flux around 13.3 ml/(cm^2·min). By reforming of the toluene and methane, the amount of H2 in the reaction effluent gas was about 2 times more than that of original H2 in simulated HCOG. The Rn-Ni/Mg(Al)O catalyst used in the membrane reactor possessed good catalytic activity and resistance to coking. After the activity test, a small amount of whisker carbon was observed on the used catalyst, and most of them could be removed in the hydrogen-rich atmosphere, implying that the carbon deposition formed on the catalyst might be a reversible process.展开更多
It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concen...It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.展开更多
Coke oven gas(COG)is one of the most important by-products in steel industry,and the conversion of COG to value-added products has attracted much attention from both economic and environmental views.In this work,we us...Coke oven gas(COG)is one of the most important by-products in steel industry,and the conversion of COG to value-added products has attracted much attention from both economic and environmental views.In this work,we use the chemical looping reforming technology to produce pure H_(2) from COG.A series of La1-xSrxFeO_(3)(x?0,0.2,0.3,0.4,0.5,0.6)perovskite oxides were prepared as oxygen carriers for this purpose.The reduction behaviors of La1-xSrxFeO_(3) perovskite by different reducing gases(H_(2),CO,CH4 and the mixed gases)are investigated to discuss the competition effect of different components in COG for reacting with the oxygen carriers.The results show that reduction temperatures of H_(2) and CO are much lower than that of CH4,and high temperatures(>800℃)are requested for selective oxidation of methane to syngas.The co-existence of CO and H_(2) shows weak effect on the equilibrium of methane conversion at high temperatures,but the oxidation of methane to syngas can inhibit the consumption of CO and H_(2).The doping of suitable amounts of Sr in LaFeO_(3) perovskite(e.g.,La0.5Sr0.5FeO_(3))significantly promotes the activity for selective oxidation of methane to syngas and inhibits the formation of carbon deposition,obtaining both high methane conversion in the COG oxidation step and high hydrogen yield in the water splitting step.The La0.5Sr0.5FeO_(3) shows the highest methane conversion(67.82%),hydrogen yield(3.34 mmol g^(-1))and hydrogen purity(99.85%).The hydrogen yield in water splitting step is treble as high as the hydrogen consumption in reduction step.These results reveal that chemical looping reforming of COG to produce pure H_(2) is feasible,and an O_(2)-assistant chemical looping reforming process can further improves the redox stability of oxygen carrier.展开更多
The oxidation induration and reduction swelling behavior of the chromium-bearing vanadium titanomagnetite pellets (CVTP) with B2O3 addition were investigated. Besides, the reduction swelling index (RSI) and compressiv...The oxidation induration and reduction swelling behavior of the chromium-bearing vanadium titanomagnetite pellets (CVTP) with B2O3 addition were investigated. Besides, the reduction swelling index (RSI) and compressive strength (CS) of the reduced CVTP were also examined using the simulated coke oven gas (COG). The results suggested that the CS of CVTP was increased from 2448 to 3819.2 N, while the porosity of CVTP was decreased from 14.86% to 10.03% with the increase in B2O3 addition amounts. Moreover, the B2O3 mainly existed in the forms of TiB0.024O2 and Fe3BO5 in both CVTP and the reduced CVTP. Specifically, the CS of the reduced CVTP was elevated from 901 to 956.2 N, while the RSI was reduced from 5.87% to 3.81% as the B2O3 addition amounts were increased. Taken together, B2O3 addition would facilitate the aggregation and diffusion of metallic iron particles, which contributed to reducing the formation of metal iron whiskers and weakening the reduction swelling behavior.展开更多
Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of metha...Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of methane in coke oven gas (COG). At 1173 K, 94% of methane conversion, 85% of H2 selectivity, 107% of CO selectivity, and as high as 15.4 mL·cm^-2·min^-1 of oxygen permeation flux were obtained. The BCFNO membrane itself had poor catalytic activity to partial oxidation of CH4 in COG. During continuous operation for 70 h at 1173 K, no degradation of the membrane reaction performance was observed. XRD and SEM characterization also demonstrated that the BCFNO membrane reactor exhibited good stability in partial oxidation of methane in COG.展开更多
A gas-tight BaCo 0.7 Fe 0.2 Nb 0.1 O 3-δ(BCFNO) tubular membrane was fabricated by hot pressure casting.And a membrane reactor with BCFNO tubular membrane and Ag-based sealant was readily constructed and applied to...A gas-tight BaCo 0.7 Fe 0.2 Nb 0.1 O 3-δ(BCFNO) tubular membrane was fabricated by hot pressure casting.And a membrane reactor with BCFNO tubular membrane and Ag-based sealant was readily constructed and applied to partial oxidation of CH4 in coke oven gas.At 875 ℃,95% of methane conversion,91% of H 2 and as high as 10 ml cm-2·min-1 of oxygen permeation flux were obtained.There was a good match in the coefficient of thermal expansion between Ag-based alloy and BCFNO membrane materials.The tubular BCFNO membrane reactor packed with Ni-based catalysts exhibited not only high activity but also good stability in hydrogen-enriched coke oven gas(COG) atmosphere.展开更多
Hydrogen production by catalytic reforming of simulated hot coke oven gas (HCOG) with toluene as a model tar compound was investigated in a fixed bed reactor over Ni/Mg(Al)O catalysts. The catalysts were prepared ...Hydrogen production by catalytic reforming of simulated hot coke oven gas (HCOG) with toluene as a model tar compound was investigated in a fixed bed reactor over Ni/Mg(Al)O catalysts. The catalysts were prepared by a homogeneous precipitation method using urea hydrolysis and characterized by ICE BET, XRD, TPR, TEM and TG. XRD showed that the hydrotalcite type precursor after calcination formed (Ni, Mg)Al2O4 spinel and Ni-Mg-O solid solution structure. TPR results suggested that the increase in Ni/Mg molar ratio gave rise to the decrease in the reduction temperature of Ni^2+ to Ni^0 on Ni/Mg(Al)O catalysts. The reaction results indicated that toluene and CH4 could completely be converted to H2 and CO in the catalytic reforming of the simulated HCOG under atmospheric pressure and the amount of H2 in the reaction effluent gas was about 4 times more than that in original HCOG. The catalysts with lower Ni/Mg molar ratio showed better catalytic activity and resistance to coking, which may become promising catalysts in the catalytic reforming of HCOG.展开更多
Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst...Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst(T-202) were studied in a continuous flow fixed bed reactor under pressures of 1.6-2.8 MPa, space time of 1.32-3.55 s and temperatures of 240-360 °C. Though the COG contains about 0.6 mol/mol H2, hydrogenation of CO and CO2 is not significant on this catalyst. The conversions of unsaturated hydrocarbons depend on their molecular structures. Diolefins and alkynes can be completely hydrogenated even at relatively low temperature and pressure. Olefins, in contrast, can only be progressively hydrogenated with increasing temperature and pressure. The hydrodesulfurization(HDS) of CS2 on this catalyst is easy. Complete conversion of CS2 was observed in the whole range of the conditions used in this work. The original COS in the COG can also be easily converted to a low level. However, its complete HDS is difficult due to the relatively high concentration of CO in the COG and due to the limitation of thermodynamics. H2 S can react with unsaturated hydrocarbons to form ethyl mercaptan and thiophene, which are then progressively hydrodesulfurized with increasing temperature and pressure. Based on the experimental observations, reaction kinetic models for the conversion of ethylene and sulfur-containing compounds were proposed; the values of the parameters in the models were obtained by regression of the experimental data.展开更多
The effects of factors such as the molar ratio of H2O to CH4 (n(H2O)/n(CH4)), methane conversion temperature and time on methane conversion rate were investigated to build kinetic model for reforming of coke-oven gas ...The effects of factors such as the molar ratio of H2O to CH4 (n(H2O)/n(CH4)), methane conversion temperature and time on methane conversion rate were investigated to build kinetic model for reforming of coke-oven gas with steam. The results of experiments show that the optimal conditions for methane conversion are that the molar ratio of H2O to CH4 varies from 1.1 to 1.3 and the conversion temperature varies from 1 223 to 1 273 K. The methane conversion rate is more than 95% when the molar ratio of H2O to CH4 is 1.2, the conversion temperature is above 1 223 K and the conversion time is longer than 0.75 s. Kinetic model of methane conversion was proposed. All results demonstrate that the calculated values by the kinetic model accord with the experimental data well, and the error is less than 1.5%.展开更多
To construct world-class iron and steel enterprises, Baosteel has adopted a strategy of environmental management that emphasizes environmental protection in the low-carbon and ecological manufacturing of steel product...To construct world-class iron and steel enterprises, Baosteel has adopted a strategy of environmental management that emphasizes environmental protection in the low-carbon and ecological manufacturing of steel products. In recent years, Baosteel has developed a series of advanced green refractory technologies (including composite refractory precast blocks with a unique ceramic glaze, and high-thermal-conductivity/high-density silica brick) for use in Baosteel coke ovens. The results of these applications not only reduce production costs and increase production efficiency, but also facilitate clean production by coke ovens. Baosteel' s coke oven has become China' s leading example of the application of green refractories.展开更多
This standard specifies the classification,specification, test method, quality appraisal procedure,labeling, packing, transportation, storage and quality certification of silica brick for coke oven.
Steam-reforming is an effective approach for upgrading methane and hydrocarbon of coke-oven gas into CO and HE, but the kinetic behavior needs more study. We investigated the conversion of methane in coke-oven gas by ...Steam-reforming is an effective approach for upgrading methane and hydrocarbon of coke-oven gas into CO and HE, but the kinetic behavior needs more study. We investigated the conversion of methane in coke-oven gas by steam reforming process in an electric tubular flow at 14 kPa with temperature varying from .500 ℃ to 9.50 ℃, and developed a kenetic model for, ignoring the effects of adsorption and diffusion. The optimal dynamic conditions for methane conversion 14 kPa are as follows: the ratio of the amount of water to the amount of methane is from 1.1 to 1.3; the reaction temperature is from 1 223 K to 1 273 K. The methane conversion rate is larger than 95% when the ratio of the amount of water to the amount of methane is 1.2 at a temperature above 1 223 K with the residence time up to 0.75 s.展开更多
During long-term use,the clay checker bricks for regenerators of coke ovens on gas side react with the impurities containing Fe and K20,causing foaming,softening and deformation,which is not only related with the impu...During long-term use,the clay checker bricks for regenerators of coke ovens on gas side react with the impurities containing Fe and K20,causing foaming,softening and deformation,which is not only related with the impurity content and properties of the clay checker bricks,but also related with the type and the composition of the dust in the gas.After long term use,the clay checker bricks of coke ovens on air side have relative lower impurities containing Fe and K20.The inferior clay checker bricks,with high impurity content and high porosity,are easy to pulverize and deteriorate due to the oxidationreduction reaction with the iron oxide and the gas.The gas quality shall be concerned for long service life of the coke oven regenerators.展开更多
Microstructure analysis shows quartz remains more or less in used silica brick for coking chamber of coke oven, and quartz gradually becomes metastable cristobalite and then translates into tridymite in used brick for...Microstructure analysis shows quartz remains more or less in used silica brick for coking chamber of coke oven, and quartz gradually becomes metastable cristobalite and then translates into tridymite in used brick for high temperature combustion chamber. Phase change of silica brick only limits to transformation of quartz and metastahie cristobalite. When finished, structure of silica brick tends to stable. Carbon sedimentates and graphitize. helping to protect the silica brick and improve heat conductivity of silica brick for coking chamber.展开更多
In order to meet the needs of hot repairing technology of coke oven, the zero expansion, silica brick with super properties has been developed, and the problem of poor thermal stability of common silica brick has been...In order to meet the needs of hot repairing technology of coke oven, the zero expansion, silica brick with super properties has been developed, and the problem of poor thermal stability of common silica brick has been over-comed . This product can be directly used after being rapidly heated after construction. At present, it has been applied in coke ovens in Italy and Baosteel.展开更多
A kind of dry refractory sealing material has been developed to repair the fine cracks in coke oven chamber. With silica sand as the main raw material, the sealing material is blown into coke oven chamber by compresse...A kind of dry refractory sealing material has been developed to repair the fine cracks in coke oven chamber. With silica sand as the main raw material, the sealing material is blown into coke oven chamber by compressed air while being applied, and bonded to brick surface or filled in fine cracks of chamber under right pressure. The physical properties of the material are similar to those of silica bricks during its application. So it can be adapted to conditions of coke oven and has good service life. The study and application results of the sealing material are described in this paper.展开更多
The phase one M-type coke oven in Baosteel was a large coke oven imported from Nippon Steel&Sumitomo Metal,which played an important role in the development of large-scaled coke ovens in China.By investigating the...The phase one M-type coke oven in Baosteel was a large coke oven imported from Nippon Steel&Sumitomo Metal,which played an important role in the development of large-scaled coke ovens in China.By investigating the shutting down process and the damage process of M-type coke oven body in Baosteel,the damage of used refractories in different parts,including carbonation chamber,combustion chamber,oven top,regenerative chamber,rising pipe,flue pipe and so on,was investigated and analyzed,which laid a good foundation for further damage analysis of coke oven body and improvement of maintenance in daily production.展开更多
Based on the detailed analysis of the third coke oven in BaoSteel, a feedbackcontrol strategy of longitudinal temperature and finished carbonization time of coke ovens wasproposed and it was applied to the third coke ...Based on the detailed analysis of the third coke oven in BaoSteel, a feedbackcontrol strategy of longitudinal temperature and finished carbonization time of coke ovens wasproposed and it was applied to the third coke oven in BaoSteel. As a result, the ratio of theinstance that the absolute deviation of the longitudinal temperature is within +- 7 deg C and thefinished carbonization time within +- 10 min is more than 80 percent, having acquired the patentsaving effect of an energy consumption lowered by 2.92 percent. At the same time, it can provide anexample for the same coke ovens inside and outside the nation.展开更多
The preparation and implementation of raw coke oven gas cut-off, which was the key process involved with shutting down the Baosteel phase I coke ovens, were investigated, and the main technical points and countermeasu...The preparation and implementation of raw coke oven gas cut-off, which was the key process involved with shutting down the Baosteel phase I coke ovens, were investigated, and the main technical points and countermeasures are presented.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers:NSFC81872597,81001239]。
文摘Objective The study aimed to estimate the benchmark dose(BMD)of coke oven emissions(COEs)exposure based on mitochondrial damage with the mitochondrial DNA copy number(mtDNAcn)as a biomarker.Methods A total of 782 subjects were recruited,including 238 controls and 544 exposed workers.The mtDNAcn of peripheral leukocytes was detected through the real-time fluorescence-based quantitative polymerase chain reaction.Three BMD approaches were used to calculate the BMD of COEs exposure based on the mitochondrial damage and its 95%confidence lower limit(BMDL).Results The mtDNAcn of the exposure group was lower than that of the control group(0.60±0.29 vs.1.03±0.31;P<0.001).A dose-response relationship was shown between the mtDNAcn damage and COEs.Using the Benchmark Dose Software,the occupational exposure limits(OELs)for COEs exposure in males was 0.00190 mg/m^(3).The OELs for COEs exposure using the BBMD were 0.00170 mg/m^(3)for the total population,0.00158 mg/m^(3)for males,and 0.00174 mg/m^(3)for females.In possible risk obtained from animal studies(PROAST),the OELs of the total population,males,and females were 0.00184,0.00178,and 0.00192 mg/m^(3),respectively.Conclusion Based on our conservative estimate,the BMDL of mitochondrial damage caused by COEs is0.002 mg/m^(3).This value will provide a benchmark for determining possible OELs.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2006AA11A189)Science and Technology Commission of Shanghai Municipality (Grant Nos. 0952NM01400 and 07DZ12036)
文摘Hydrogen amplification from simulated hot coke oven gas (HCOG) was investigated in a BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) membrane reactor combined with a Ru-Ni/Mg(Al)O catalyst by the partial oxidation of hydrocarbon compounds under atmospheric pressure. Under optimized reaction conditions, the dense oxygen permeable membrane had an oxygen permeation flux around 13.3 ml/(cm^2·min). By reforming of the toluene and methane, the amount of H2 in the reaction effluent gas was about 2 times more than that of original H2 in simulated HCOG. The Rn-Ni/Mg(Al)O catalyst used in the membrane reactor possessed good catalytic activity and resistance to coking. After the activity test, a small amount of whisker carbon was observed on the used catalyst, and most of them could be removed in the hydrogen-rich atmosphere, implying that the carbon deposition formed on the catalyst might be a reversible process.
基金Project(51404005)supported by the National Natural Science Foundation of China
文摘It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.
基金This work was supported by the National Key R&D Program of China(2018YFB0605401)National Natural Science Foundation of China(Nos.51774159 and 51604137)the Qinglan Project of Kunming University of Science and Technology.
文摘Coke oven gas(COG)is one of the most important by-products in steel industry,and the conversion of COG to value-added products has attracted much attention from both economic and environmental views.In this work,we use the chemical looping reforming technology to produce pure H_(2) from COG.A series of La1-xSrxFeO_(3)(x?0,0.2,0.3,0.4,0.5,0.6)perovskite oxides were prepared as oxygen carriers for this purpose.The reduction behaviors of La1-xSrxFeO_(3) perovskite by different reducing gases(H_(2),CO,CH4 and the mixed gases)are investigated to discuss the competition effect of different components in COG for reacting with the oxygen carriers.The results show that reduction temperatures of H_(2) and CO are much lower than that of CH4,and high temperatures(>800℃)are requested for selective oxidation of methane to syngas.The co-existence of CO and H_(2) shows weak effect on the equilibrium of methane conversion at high temperatures,but the oxidation of methane to syngas can inhibit the consumption of CO and H_(2).The doping of suitable amounts of Sr in LaFeO_(3) perovskite(e.g.,La0.5Sr0.5FeO_(3))significantly promotes the activity for selective oxidation of methane to syngas and inhibits the formation of carbon deposition,obtaining both high methane conversion in the COG oxidation step and high hydrogen yield in the water splitting step.The La0.5Sr0.5FeO_(3) shows the highest methane conversion(67.82%),hydrogen yield(3.34 mmol g^(-1))and hydrogen purity(99.85%).The hydrogen yield in water splitting step is treble as high as the hydrogen consumption in reduction step.These results reveal that chemical looping reforming of COG to produce pure H_(2) is feasible,and an O_(2)-assistant chemical looping reforming process can further improves the redox stability of oxygen carrier.
基金Projects(51674084,51174051,51574082)supported by the National Natural Science Foundation of China
文摘The oxidation induration and reduction swelling behavior of the chromium-bearing vanadium titanomagnetite pellets (CVTP) with B2O3 addition were investigated. Besides, the reduction swelling index (RSI) and compressive strength (CS) of the reduced CVTP were also examined using the simulated coke oven gas (COG). The results suggested that the CS of CVTP was increased from 2448 to 3819.2 N, while the porosity of CVTP was decreased from 14.86% to 10.03% with the increase in B2O3 addition amounts. Moreover, the B2O3 mainly existed in the forms of TiB0.024O2 and Fe3BO5 in both CVTP and the reduced CVTP. Specifically, the CS of the reduced CVTP was elevated from 901 to 956.2 N, while the RSI was reduced from 5.87% to 3.81% as the B2O3 addition amounts were increased. Taken together, B2O3 addition would facilitate the aggregation and diffusion of metallic iron particles, which contributed to reducing the formation of metal iron whiskers and weakening the reduction swelling behavior.
基金supported by the National High-Tech Research and Development Program of China (No. 2006AA11A189)the Research on Novel Technology of Hydrogen Production from Oven Gas from Metallurgy Process (No. 07DZ12036)the National Key Technolo-gies Research and Development Program of China (No. 2006BA103A05)
文摘Perovskite-type oxygen-permeable membrane reactors of BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) packed with Ru-based catalyst had high oxygen permeability and could be used for hydrogen production by partial oxidation of methane in coke oven gas (COG). At 1173 K, 94% of methane conversion, 85% of H2 selectivity, 107% of CO selectivity, and as high as 15.4 mL·cm^-2·min^-1 of oxygen permeation flux were obtained. The BCFNO membrane itself had poor catalytic activity to partial oxidation of CH4 in COG. During continuous operation for 70 h at 1173 K, no degradation of the membrane reaction performance was observed. XRD and SEM characterization also demonstrated that the BCFNO membrane reactor exhibited good stability in partial oxidation of methane in COG.
基金supported by the National High Technology Research and Development Program of China (Project No. 2006AA11A189)
文摘A gas-tight BaCo 0.7 Fe 0.2 Nb 0.1 O 3-δ(BCFNO) tubular membrane was fabricated by hot pressure casting.And a membrane reactor with BCFNO tubular membrane and Ag-based sealant was readily constructed and applied to partial oxidation of CH4 in coke oven gas.At 875 ℃,95% of methane conversion,91% of H 2 and as high as 10 ml cm-2·min-1 of oxygen permeation flux were obtained.There was a good match in the coefficient of thermal expansion between Ag-based alloy and BCFNO membrane materials.The tubular BCFNO membrane reactor packed with Ni-based catalysts exhibited not only high activity but also good stability in hydrogen-enriched coke oven gas(COG) atmosphere.
基金The financial support received from the National High Technology Research and Development Program of China (Grant No.2006AA11A189)Science and Technology Commission of Shanghai Municipality (Grant No. 07DZ12036)National Engineering Research Center for Advanced Steel Technology (NERCAST)(Grant No. 050209)
文摘Hydrogen production by catalytic reforming of simulated hot coke oven gas (HCOG) with toluene as a model tar compound was investigated in a fixed bed reactor over Ni/Mg(Al)O catalysts. The catalysts were prepared by a homogeneous precipitation method using urea hydrolysis and characterized by ICE BET, XRD, TPR, TEM and TG. XRD showed that the hydrotalcite type precursor after calcination formed (Ni, Mg)Al2O4 spinel and Ni-Mg-O solid solution structure. TPR results suggested that the increase in Ni/Mg molar ratio gave rise to the decrease in the reduction temperature of Ni^2+ to Ni^0 on Ni/Mg(Al)O catalysts. The reaction results indicated that toluene and CH4 could completely be converted to H2 and CO in the catalytic reforming of the simulated HCOG under atmospheric pressure and the amount of H2 in the reaction effluent gas was about 4 times more than that in original HCOG. The catalysts with lower Ni/Mg molar ratio showed better catalytic activity and resistance to coking, which may become promising catalysts in the catalytic reforming of HCOG.
文摘Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst(T-202) were studied in a continuous flow fixed bed reactor under pressures of 1.6-2.8 MPa, space time of 1.32-3.55 s and temperatures of 240-360 °C. Though the COG contains about 0.6 mol/mol H2, hydrogenation of CO and CO2 is not significant on this catalyst. The conversions of unsaturated hydrocarbons depend on their molecular structures. Diolefins and alkynes can be completely hydrogenated even at relatively low temperature and pressure. Olefins, in contrast, can only be progressively hydrogenated with increasing temperature and pressure. The hydrodesulfurization(HDS) of CS2 on this catalyst is easy. Complete conversion of CS2 was observed in the whole range of the conditions used in this work. The original COS in the COG can also be easily converted to a low level. However, its complete HDS is difficult due to the relatively high concentration of CO in the COG and due to the limitation of thermodynamics. H2 S can react with unsaturated hydrocarbons to form ethyl mercaptan and thiophene, which are then progressively hydrodesulfurized with increasing temperature and pressure. Based on the experimental observations, reaction kinetic models for the conversion of ethylene and sulfur-containing compounds were proposed; the values of the parameters in the models were obtained by regression of the experimental data.
基金Project(291054) supported by Postdoctoral Fund of China
文摘The effects of factors such as the molar ratio of H2O to CH4 (n(H2O)/n(CH4)), methane conversion temperature and time on methane conversion rate were investigated to build kinetic model for reforming of coke-oven gas with steam. The results of experiments show that the optimal conditions for methane conversion are that the molar ratio of H2O to CH4 varies from 1.1 to 1.3 and the conversion temperature varies from 1 223 to 1 273 K. The methane conversion rate is more than 95% when the molar ratio of H2O to CH4 is 1.2, the conversion temperature is above 1 223 K and the conversion time is longer than 0.75 s. Kinetic model of methane conversion was proposed. All results demonstrate that the calculated values by the kinetic model accord with the experimental data well, and the error is less than 1.5%.
文摘To construct world-class iron and steel enterprises, Baosteel has adopted a strategy of environmental management that emphasizes environmental protection in the low-carbon and ecological manufacturing of steel products. In recent years, Baosteel has developed a series of advanced green refractory technologies (including composite refractory precast blocks with a unique ceramic glaze, and high-thermal-conductivity/high-density silica brick) for use in Baosteel coke ovens. The results of these applications not only reduce production costs and increase production efficiency, but also facilitate clean production by coke ovens. Baosteel' s coke oven has become China' s leading example of the application of green refractories.
文摘This standard specifies the classification,specification, test method, quality appraisal procedure,labeling, packing, transportation, storage and quality certification of silica brick for coke oven.
基金the Postdoctoral Foundation of China under the grant No. 2910001
文摘Steam-reforming is an effective approach for upgrading methane and hydrocarbon of coke-oven gas into CO and HE, but the kinetic behavior needs more study. We investigated the conversion of methane in coke-oven gas by steam reforming process in an electric tubular flow at 14 kPa with temperature varying from .500 ℃ to 9.50 ℃, and developed a kenetic model for, ignoring the effects of adsorption and diffusion. The optimal dynamic conditions for methane conversion 14 kPa are as follows: the ratio of the amount of water to the amount of methane is from 1.1 to 1.3; the reaction temperature is from 1 223 K to 1 273 K. The methane conversion rate is larger than 95% when the ratio of the amount of water to the amount of methane is 1.2 at a temperature above 1 223 K with the residence time up to 0.75 s.
文摘During long-term use,the clay checker bricks for regenerators of coke ovens on gas side react with the impurities containing Fe and K20,causing foaming,softening and deformation,which is not only related with the impurity content and properties of the clay checker bricks,but also related with the type and the composition of the dust in the gas.After long term use,the clay checker bricks of coke ovens on air side have relative lower impurities containing Fe and K20.The inferior clay checker bricks,with high impurity content and high porosity,are easy to pulverize and deteriorate due to the oxidationreduction reaction with the iron oxide and the gas.The gas quality shall be concerned for long service life of the coke oven regenerators.
文摘Microstructure analysis shows quartz remains more or less in used silica brick for coking chamber of coke oven, and quartz gradually becomes metastable cristobalite and then translates into tridymite in used brick for high temperature combustion chamber. Phase change of silica brick only limits to transformation of quartz and metastahie cristobalite. When finished, structure of silica brick tends to stable. Carbon sedimentates and graphitize. helping to protect the silica brick and improve heat conductivity of silica brick for coking chamber.
文摘In order to meet the needs of hot repairing technology of coke oven, the zero expansion, silica brick with super properties has been developed, and the problem of poor thermal stability of common silica brick has been over-comed . This product can be directly used after being rapidly heated after construction. At present, it has been applied in coke ovens in Italy and Baosteel.
文摘A kind of dry refractory sealing material has been developed to repair the fine cracks in coke oven chamber. With silica sand as the main raw material, the sealing material is blown into coke oven chamber by compressed air while being applied, and bonded to brick surface or filled in fine cracks of chamber under right pressure. The physical properties of the material are similar to those of silica bricks during its application. So it can be adapted to conditions of coke oven and has good service life. The study and application results of the sealing material are described in this paper.
文摘The phase one M-type coke oven in Baosteel was a large coke oven imported from Nippon Steel&Sumitomo Metal,which played an important role in the development of large-scaled coke ovens in China.By investigating the shutting down process and the damage process of M-type coke oven body in Baosteel,the damage of used refractories in different parts,including carbonation chamber,combustion chamber,oven top,regenerative chamber,rising pipe,flue pipe and so on,was investigated and analyzed,which laid a good foundation for further damage analysis of coke oven body and improvement of maintenance in daily production.
文摘Based on the detailed analysis of the third coke oven in BaoSteel, a feedbackcontrol strategy of longitudinal temperature and finished carbonization time of coke ovens wasproposed and it was applied to the third coke oven in BaoSteel. As a result, the ratio of theinstance that the absolute deviation of the longitudinal temperature is within +- 7 deg C and thefinished carbonization time within +- 10 min is more than 80 percent, having acquired the patentsaving effect of an energy consumption lowered by 2.92 percent. At the same time, it can provide anexample for the same coke ovens inside and outside the nation.
文摘The preparation and implementation of raw coke oven gas cut-off, which was the key process involved with shutting down the Baosteel phase I coke ovens, were investigated, and the main technical points and countermeasures are presented.