期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The significance of resource recycling for coking wastewater treatment:based on environmental and economic life cycle assessment
1
作者 Di Zhang He Zhao +2 位作者 Wenfang Gao Yuxing Sheng Hongbin Cao 《Green Chemical Engineering》 EI CSCD 2024年第1期50-59,共10页
The sustainability of the coking industry is supported by reasonable production profit and environmental quality requirements.The traditional measures substantially increased the related costs for enterprises to reach... The sustainability of the coking industry is supported by reasonable production profit and environmental quality requirements.The traditional measures substantially increased the related costs for enterprises to reach standards.This paper aims to develop a comprehensive cost combined environmental impact assessment method that is necessary for the analysis of wastewater treatment systems.Typical three coking wastewater treatment processes in China were evaluated.Results showed that eutrophication dominantly contributed to the overall environmental effect.Improving effluent quality could significantly reduce the total environmental impact.In terms of an economic perspective,the price of raw materials was the main factor that affected the operating cost of comprehensive treatment.Based on subsystem analysis,the pretreatment stage accounted for the majority of environmental and cost burdens,respectively reaching 64%-78%and 64%-86%.Optimizing the pretreatment process by enhancing the efficiency of high concentration raw material recovery and substituting toxic raw materials for extractant could reduce the environmental impact and economic cost by 43.8%and 57%,respectively,which was an effective way to improve the potential performance of coking wastewater treatment plants(WWTPs). 展开更多
关键词 Life cycle assessment Environmental impact Economic evaluation coking wastewater treatment Resource recycling Comprehensive benefits
原文传递
Coking wastewater treatment for industrial reuse purpose: Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis 被引量:39
2
作者 Xuewen Jin Enchao Li +2 位作者 Shuguang Lu Zhaofu Qiu Qian Sui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第8期1565-1574,共10页
A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai... A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai Baosteel Chemical Co. Ltd., was investigated to treat coking wastewater for industrial reuse over a period of one year. The removals reached 82.5% (COD), 89.6% (BOD), 99.8% (ammonium nitrogen), 99.9% (phenol), 44.6% (total cyanide (T-CN)), 99.7% (thiocyanide (SCN-)) and 8.9% (fluoride), during the A1/A2/O biological treatment stage, and all parameters were further reduced by over 96.0%, except for fluoride (86.4%), in the final discharge effluent from the currently operating plant. The pilot-scale MBR process reduced the turbidity to less than 0.65 NTU, and most of the toxic organic compounds were degraded or intercepted by the A1/A2/O followed MBR processes. In addition, parameters including COD, T-CN, total nitrogen, fluoride, chloride ion, hardness and conductivity were significantly reduced by the NF-RO system to a level suitable for industrial reuse, with a total water production ratio of 70.7%. However, the concentrates from the NF and RO units were highly polluted and should be disposed of properly or further treated before being discharged. 展开更多
关键词 coking wastewater industrial water reuse biological treatment MBR NF-RO
原文传递
The influence of nitrified supernate’s recycle ratio on the removal of coking wastewater 被引量:1
3
作者 HOU Hongjuan DONG Xiaodan SHAO Lixian 《Baosteel Technical Research》 CAS 2009年第1期60-63,共4页
The influence of the recycle ratio on the removal of coking wastewater has been researched using the anaerobicanoxic-aerobic (A/A/O) biofilm process. The research indicates that the concentrations of chemical oxygen... The influence of the recycle ratio on the removal of coking wastewater has been researched using the anaerobicanoxic-aerobic (A/A/O) biofilm process. The research indicates that the concentrations of chemical oxygen demand (COD) and NO3 -N in the water are the lowest when the recycle ratio is 3:1 ,but the removal efficiency of total cyanide (TCN) is the highest when the recycle ratio is 1: 1. The removal efficiency of NH4^+ -N is more than 99% at all three different recycle ratios. Compared with Grade A of the National Discharge Standard (GB 8978--1996), the effluent NH4 -N is standard,but COD and TCN can not meet the requirements and further treatment processes are needed. 展开更多
关键词 coking wastewater treatment recycle ratio A/A/O BIOFILM
下载PDF
Temporal assembly patterns of microbial communities in three parallel bioreactors treating low-concentration coking wastewater with differing carbon source concentrations
4
作者 Weijia Li Yu Xia +4 位作者 Na Li Jie Chang Jing Liu Pei Wang Xuwen He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期455-468,共14页
Carbon source is an important factor of biological treatment systems, the effects of which on their temporal community assembly patterns are not sufficiently understood currently.In this study, the temporal dynamics a... Carbon source is an important factor of biological treatment systems, the effects of which on their temporal community assembly patterns are not sufficiently understood currently.In this study, the temporal dynamics and driving mechanisms of the communities in three parallel bioreactors for low-concentration coking wastewater(CWW) treatment with differing carbon source concentrations(S0 with no glucose addition, S1 with 200 mg/L glucose addition and S2 with 400 mg/L glucose addition) were comprehensively studied. Highthroughput sequencing and bioinformatics analyses including network analysis and Infer Community Assembly Mechanisms by Phylogenetic bin-based null model(iCAMP) were used. The communities of three systems showed turnover rates of 0.0029~0.0034 every 15days. Network analysis results showed that the S0 network showed higher positive correlation proportion(71.43%) and clustering coefficient(0.33), suggesting that carbon source shortage in S0 promoted interactions and cooperation of microbes. The neutral community model analysis showed that the immigration rate increased from 0.5247 in S0 to 0.6478in S2. The iCAMP analysis results showed that drift(45.89%) and homogeneous selection(31.68%) dominated in driving the assembly of all the investigated microbial communities.The contribution of homogeneous selection increased with the increase of carbon source concentrations, from 27.92% in S0 to 36.08% in S2. The OTUs participating in aerobic respiration and tricarboxylic acid(TCA) cycle were abundant among the bins mainly affected by deterministic processes, while those related to the metabolism of refractory organic pollutants in CWW such as alkanes, benzenes and phenols were abundant in the bins dominated by stochastic processes. 展开更多
关键词 coking wastewater treatment Temporal dynamics Network analysis Deterministic processes Stochastic processes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部