Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
This study uses data provided by the National Meteorological Information Center of China, Japan Meteorological Agency (JMA) and National Oceanic Atmospheric Administration (NOAA) Physical Sciences Laboratory of the US...This study uses data provided by the National Meteorological Information Center of China, Japan Meteorological Agency (JMA) and National Oceanic Atmospheric Administration (NOAA) Physical Sciences Laboratory of the USA to analyze a cold air weather process at the beginning of January 2021. Synoptic analysis is mainly used to summarize synoptic laws or patterns based on observational data, and describe and infer weather processes. The main conclusions are as follows: The cold air travels south along the northwest path, affecting most of China. During the cold wave process, the first cold air is weak, which has a certain cooling effect on northern China. The second cold air was guided by the low vortex, the accumulation in the transverse groove of Mongolia was strengthened, and the cooling effect was significant. The southwest jet showed an increasing trend, and the water vapor transport conditions were good. However, due to the relatively gentle southern branch system, the warm and humid air flow was weak and the precipitation level was small. The purpose of this study is to better understand a large-scale cold air weather process in January 2021 in China.展开更多
The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and ...The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and negative nanosecond voltage pulses with an amplitude of tens of kilovolts were applied.Time-resolved images of the discharge development were taken with a fourchannel Intensified Charge Coupled Device(ICCD)camera.The minimum delay between the camera channels could be as short as≈0.1 ns.This made it possible to study the gap breakdown process with subnanosecond resolution.It was observed that a wide-diameter streamer develops from the high-voltage pointed electrode.The ionization processes near the grounded pin electrode started when the streamer crossed half of the gap.After bridging the gap by the streamer,a diffuse discharge was formed.The development of spark leaders from bright spots on the surface of the pointed electrodes was observed at the next stage.It was found that the rate of development of the spark leader is an order of magnitude lower than that of the wide-diameter streamer.Long thin luminous tracks were observed against the background of a discharge plasma glow.It has been established that the tracks are adjacent to brightly glowing spots on the electrodes and are associated with the flight of small particles.展开更多
This paper used potential height field data published by the China National Climate Center and the US NCEP reanalysis data. A study was conducted on a strong cold wave weather process in central and eastern China from...This paper used potential height field data published by the China National Climate Center and the US NCEP reanalysis data. A study was conducted on a strong cold wave weather process in central and eastern China from October 2 to 5, 2022. The results show that this weather process is a cold air weather process of “horizontal trough to vertical” type from the east of Novaya Zemlya Island. Cold air passes through Russia and Mongolia south, controlling northern China. The precipitation process is caused by the combination of high-altitude trough, ground front, warm and humid air flow, and precipitation weather formed by the influence of warm and humid air due to the 700 hPa shear line. The northern Sichuan Basin and the middle and lower reaches of the Yellow River in China can precipitate almost 50 mm. Water vapor is transported from the South China Sea to central and eastern China by the southwest warm and humid air flow along the west side of the West Pacific Subtropical High. Water vapor is concentrated over the precipitation area through horizontal convergence and is the most important source of water vapor causing precipitation.展开更多
Developmental disorders(DDs)are a kind of chronic maladies,which can cause serious irreversible detriment to children’s physical and mental health.It is predominantly regulated by the interaction of environment and h...Developmental disorders(DDs)are a kind of chronic maladies,which can cause serious irreversible detriment to children’s physical and mental health.It is predominantly regulated by the interaction of environment and heredity.Cold regions are mainly located in the high latitudes of China.Their living environment is characterized by frequent cold wave,huge temperature difference,severe air pollution,high calorie diet,less exercise,smoking,drinking,etc.In recent years,substantial advances have been made in studies of the correlation between the living environment features in cold regions and the DDs.Accordingly,this article reviews the impact of the peculiar living environment of cold regions on DDs,with a view to provide fresh prevention strategies for reducing the morbidity of DDs in China cold regions by ameliorating living environment.展开更多
In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmosphe...In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data, especially regarding turbulence. In this study, four-layer gradient meteorological observation data and one-layer, 10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China. The results show that, with the passage of a cold air front, the wind speed exhibits low-frequency variations and that the wind systematically descends. During the strong wind period, the wind speed increases with height in the surface layer. Regular gust packets are superimposed on the basic strong wind flow. Before the passage of cold air, the wind gusts exhibit a coherent structure. The wind and turbulent momentum fluxes are small, although the gusty wind momentum flux is slightly larger than the turbulent momentum flux. However, during the invasion of cold air, both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed, and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period. After the cold air invasion, this structure almost disappears.展开更多
In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the ...With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy.展开更多
Based on intensive automatic weather station data, satellite cloud imagery, NCEP reanalyzed data, and the simulation results from mesoscale numerical models, this study analyzes the characteristics and formation mecha...Based on intensive automatic weather station data, satellite cloud imagery, NCEP reanalyzed data, and the simulation results from mesoscale numerical models, this study analyzes the characteristics and formation mechanisms of the mesoscale convection system(MCS) during the extreme precipitation event that was triggered by a weakened low-pressure inverted trough of Typhoon Haikui on August 10/2012. The results of this study show that cold air at the rear of a northeastern cold vortex creates thermodynamic conditions favorable to the development of extreme precipitation. The main body of the cold air is northward located so that the cold air invades only the middle layer of the periphery of the inverted trough. Thus, the cold air minimally affects the lower layer, which results in a vertically distributed structure of the temperature advection that augments the formation and development of convective instability stratification. In the middle troposphere, the cold air encounters the convergent, ascending, warm moist air from the low-pressure inverted trough, leading to frontogenesis. The frontogenesis enhances wind convergence which, in turn, further enhances the frontogenesis, and the positive feedback between these two forces augments the development of meso- and small-scale convection systems in the rainstorm region and its vicinity, which strengthens the upward transportation of water vapor from low layers and thickening of water vapor convergence and results in local heavy rains.展开更多
The NCEP/NCAR reanalysis data are used to investigate the role of cold air and moisture characteristics during the evolution of two cases of tropical cyclones (Nanmadol and Irma) which made landfall on China in winter...The NCEP/NCAR reanalysis data are used to investigate the role of cold air and moisture characteristics during the evolution of two cases of tropical cyclones (Nanmadol and Irma) which made landfall on China in wintertime. The results are shown as follows. (1) The East Asia trough steered the cold air into the tropical ocean in early winter. The tropical cyclones moved in opposite directions with a high moving out to sea and the enhancement of the pressure gradient at the periphery played a role in maintaining and strengthening the intensity of the storms. The intrusion of weak cold air into the low levels of the tropical cyclones strengthened them by improving the cyclonic disturbance when they were still over the warm sea surface. When the cold air was strong enough and intruded into the eyes, the warm cores were damaged and stuffed before dissipation. (2) The tropical cyclones were formed in a convergence zone of moisture flux and their development could enhance the disturbance of water vapor convergence, thus strengthening the moisture convergence zone. However, when they were outside the moisture zone, the storms could not gain sufficient water vapor and became weak. There were no belts of strong moisture transportation during the wintertime tropical cyclone processes.展开更多
A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are ...A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are used to understand the snowfall process, including why the precipitation maxima formed along the Yeongdong coastal region rather than over the mountain slope and ridge top during. The numerical simulation with a 4-kin horizontal grid spacing and 43 levels reproduces very well the narrow snowband located off the eastern Korean coast, away from, instead of over, the Yeongdong coastal mountain range. The general evolution of the snowband agrees quite well with radar observations, while the water-equivalent precipitation amount agrees reasonably well with radar precipitation estimate. The simulation results clearly show that the snow band developed due to the lifting by a coastal front that developed because of the damming of cold air against the eastern slope of the coastal mountain range. The damming was enhanced by the advection of cold air by a tow-level mountain-parallel jet from the north, formed due to geostrophic adjustment as the on-shore upslope air was decelerated by the mountain blocking. As the onshore flow weakened later due to synoptic-scale flow pattern change, the cold front propagated off shore and the precipitation dissipated.展开更多
It is generally accepted that environmental factors can significantly influence respiratory system. Cold is one of these factors. Understanding of the reaction of airways to cold air is very important tool leading to ...It is generally accepted that environmental factors can significantly influence respiratory system. Cold is one of these factors. Understanding of the reaction of airways to cold air is very important tool leading to improvement in management of cold induced rhinitis, cold induced asthma, exercise induced asthma, and exacerbation of chronic airway diseases induced by cold exposure. Despite the airways are protected against cold air by powerful heat and moisture exchanging counter current system within the nose, they are still at the risk of onset and development of cold induced symptoms mainly if this mechanism is insufficient, exposed person hyperventilates or is breathing subfreezing air. Some of the mechanisms involved in cold air induced reactions are understood quite well, but some of them are still discussed as they have not been satisfactorily explained, yet. Most discussed mechanisms by which cold air may induce respiratory symptoms include direct cooling and exsiccation of mucosal surface with subsequent hyper-tonicity of superficial fluid layer and interactions between the trigeminal and the vagus nerve at the central level. Molecular background for such a reaction may rely on the presence of thermo sensitive channels, mainly TRPM8, expressed on airway afferent nerves, which initiate response to cold air, giving a rise to autonomic responses like bronchoconstriction, cough, dyspnoea, chest tightness, mucus secretion and mucosal swelling. Identification of targets for cold action in the airway may help to identify potent antagonists which may prevent or reverse cold induced reactions sharing possibility for clinical application.展开更多
Employing the mesoscale WRF(Weather Research and Forecast) model, Super Typhoon Saomai(2006) is simulated. The variation of track and intensity and its offshore rapid intensification process are well demonstrated by t...Employing the mesoscale WRF(Weather Research and Forecast) model, Super Typhoon Saomai(2006) is simulated. The variation of track and intensity and its offshore rapid intensification process are well demonstrated by the model, and the temperature and humidity patterns associated with the dry cold air activity and their impact on and mechanism of the offshore rapid intensification of Saomai are mainly studied in this paper. The results indicate that high-resolution water vapor imagery can visually reveal the development, evolution, interaction as well as the mutual complementation of the dry cold air activity accompanied with the development of Saomai. The offshore rapid intensification phenomenon of Saomai is closely related to the dry cold air which originates from the upper- and mid-troposphere. Besides, the dry cold air from the upper troposphere is stronger than that from the mid-troposphere.Saomai intensifies as the dry cold air from the northwest moves toward its circulation but weakens when the dry cold air from the southwest is drawn into the storm. Dry cold airflows and their cold advection effect caused by the downward motion across the isentropic surface are favorable to the development of Saomai. The dry cold air always moves along an isentropic surface from the upper troposphere to the mid-troposphere around the typhoon circulation and contributes to Saomai's abrupt intensity change.展开更多
A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynold...A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.展开更多
Based on the conventional meteorological data and the NCEP/NCAR 1° × 1° reanalysis data and those related to mid-scale automatic station, satellite cloud picture and radar return, with the dynamic...Based on the conventional meteorological data and the NCEP/NCAR 1° × 1° reanalysis data and those related to mid-scale automatic station, satellite cloud picture and radar return, with the dynamic diagnosis analysis method, an analysis is made on the process of the convective rainstorm of quasi-stationary front triggered by the weak cold air on June 4-7, 2014, showing: 1) the process occurred in the event of convection of a stationary front triggered by the eastward moving south trough and the southward moving weak cold air from west under the background of circulation of two ridges and one trough at the Asian-European mid-high latitude and weakening and southeastward moving subtropical high;2) a system configuration that contributes to convective rainstorms formed in the event of the convergence of low-level moisture, upper-level divergence and the continuous vertical ascending motion after the 200 hPa upper-level jet stream moved westwards from east and the 850 hPa southwest jet stream intensified;3) after the intrusion by weak cold air of the meso-scale katallobaric area formed by the accumulated warm moist air of Guangxi before the intrusion, the warm moist air rose to trigger convection;convection cells developed and spread nearby the boundary between anallobaric area and katallobaric area, during which total 5 MCSs developed and each formed a rainstorm center at the part where the MCSs coincide;a meso-scale katallobaric area forms and develops 2 - 5 hours earlier than convection, so that it is also a warning of heavy rains.展开更多
The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Fin...The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.展开更多
A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical pr...A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300℃ are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield strength will increase. But if the volume fraction of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elongation will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will he unsatisfied.展开更多
In 2005,significant rainfall reinforcement and severe disaster was induced by tropical cyclone(TC) Talim after it made landfall on the east of China.Observational analyses show that it has relationship with cold air i...In 2005,significant rainfall reinforcement and severe disaster was induced by tropical cyclone(TC) Talim after it made landfall on the east of China.Observational analyses show that it has relationship with cold air intrusion.For investigating the impact of cold air intensity,we make use of Weather Research and Forecasting(WRF) model,the synthesizer of NCEP/NCAR reanalysis data and Japan regional spectral model data,to carry out numerical experiments.Results show that rainfall reinforcement occurs in all experiments.Different intensity of cold air can modify the rainfall distribution and intensity significantly.In the rainfall center,the increment maximum of rainfall is twice as large as that of the minimum.Moderate cold air intrusion may result in the strongest rainfall reinforcement.Different cold air intensity can lead to different motion of low-level convergence lines and fronts.There is a good relationship between the rainfall region and the eastern part of the front.On one hand,strong cold air weakens the TC intensity by its intrusion into the TC center and results in weak convergence and a convergent zone and a rain band shifted southward.On the other hand,weak cold air reduces the convergence and moves the convergent zone and rain band northward.Moderate cold air intrusion maintains strong low-level convergence and high-level divergence,keeping strong upward motion over certain regions.Consequently,the rain band begins to stagnate and rainfall reinforces abruptly therein.展开更多
Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyce...Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae, so as to provide valuable information for largescale application of plasma in the fermentation industry. Suspensions of S. cerevisiae cells were exposed to air cold plasma for 0, 1, 2, 3, 4 and 5 min, and then subjected to various analyses prior to fermentation (Oh) and at the 9 and 21 h stages of fermentation. Compared with nonexposed cells, cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca2+ concentration as a result of the significant increase in membrane potential prior to fermentation. At the same time, the ATP level in the cell suspension decreased by about 40%, resulting in a reduction of about 60% in NADH prior to culturing. However, the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at 0 h. Taken together, the results indicated that exposure of S. cerevisiae to air cold plasma could increase its cytoplasmic free Ca2+ concentration by improving the cell membrane potential, consequently leading to changes in ATP and NADH levels.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences[grant numbers XDA23090102]the National Natural Science Foundation of China[grant numbers 42175078 and 42075040]+1 种基金the Health Meteorological Project of Hebei Province[grant number FW202150]the National Key Research and Development Program of China[grant number 2018YFA0606203].
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
文摘This study uses data provided by the National Meteorological Information Center of China, Japan Meteorological Agency (JMA) and National Oceanic Atmospheric Administration (NOAA) Physical Sciences Laboratory of the USA to analyze a cold air weather process at the beginning of January 2021. Synoptic analysis is mainly used to summarize synoptic laws or patterns based on observational data, and describe and infer weather processes. The main conclusions are as follows: The cold air travels south along the northwest path, affecting most of China. During the cold wave process, the first cold air is weak, which has a certain cooling effect on northern China. The second cold air was guided by the low vortex, the accumulation in the transverse groove of Mongolia was strengthened, and the cooling effect was significant. The southwest jet showed an increasing trend, and the water vapor transport conditions were good. However, due to the relatively gentle southern branch system, the warm and humid air flow was weak and the precipitation level was small. The purpose of this study is to better understand a large-scale cold air weather process in January 2021 in China.
基金performed within the framework of the State assignment of the IHCE SB RAS,project No.FWRM-2021-0014.
文摘The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and negative nanosecond voltage pulses with an amplitude of tens of kilovolts were applied.Time-resolved images of the discharge development were taken with a fourchannel Intensified Charge Coupled Device(ICCD)camera.The minimum delay between the camera channels could be as short as≈0.1 ns.This made it possible to study the gap breakdown process with subnanosecond resolution.It was observed that a wide-diameter streamer develops from the high-voltage pointed electrode.The ionization processes near the grounded pin electrode started when the streamer crossed half of the gap.After bridging the gap by the streamer,a diffuse discharge was formed.The development of spark leaders from bright spots on the surface of the pointed electrodes was observed at the next stage.It was found that the rate of development of the spark leader is an order of magnitude lower than that of the wide-diameter streamer.Long thin luminous tracks were observed against the background of a discharge plasma glow.It has been established that the tracks are adjacent to brightly glowing spots on the electrodes and are associated with the flight of small particles.
文摘This paper used potential height field data published by the China National Climate Center and the US NCEP reanalysis data. A study was conducted on a strong cold wave weather process in central and eastern China from October 2 to 5, 2022. The results show that this weather process is a cold air weather process of “horizontal trough to vertical” type from the east of Novaya Zemlya Island. Cold air passes through Russia and Mongolia south, controlling northern China. The precipitation process is caused by the combination of high-altitude trough, ground front, warm and humid air flow, and precipitation weather formed by the influence of warm and humid air due to the 700 hPa shear line. The northern Sichuan Basin and the middle and lower reaches of the Yellow River in China can precipitate almost 50 mm. Water vapor is transported from the South China Sea to central and eastern China by the southwest warm and humid air flow along the west side of the West Pacific Subtropical High. Water vapor is concentrated over the precipitation area through horizontal convergence and is the most important source of water vapor causing precipitation.
基金This work was supported by the Key Project of Harbin Medical University Cultivation Fund.
文摘Developmental disorders(DDs)are a kind of chronic maladies,which can cause serious irreversible detriment to children’s physical and mental health.It is predominantly regulated by the interaction of environment and heredity.Cold regions are mainly located in the high latitudes of China.Their living environment is characterized by frequent cold wave,huge temperature difference,severe air pollution,high calorie diet,less exercise,smoking,drinking,etc.In recent years,substantial advances have been made in studies of the correlation between the living environment features in cold regions and the DDs.Accordingly,this article reviews the impact of the peculiar living environment of cold regions on DDs,with a view to provide fresh prevention strategies for reducing the morbidity of DDs in China cold regions by ameliorating living environment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40965001 and 40875008)the open project of State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences (Grant No.2009LASW-A02)
文摘In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data, especially regarding turbulence. In this study, four-layer gradient meteorological observation data and one-layer, 10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China. The results show that, with the passage of a cold air front, the wind speed exhibits low-frequency variations and that the wind systematically descends. During the strong wind period, the wind speed increases with height in the surface layer. Regular gust packets are superimposed on the basic strong wind flow. Before the passage of cold air, the wind gusts exhibit a coherent structure. The wind and turbulent momentum fluxes are small, although the gusty wind momentum flux is slightly larger than the turbulent momentum flux. However, during the invasion of cold air, both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed, and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period. After the cold air invasion, this structure almost disappears.
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
基金Financial supports for this project, provided by the key program supported by the National Natural Science Foundation of China(No. 51134005)the Doctoral Scientific Fund Project of the Ministry of Education of China (No. 20120023120004), are gratefully acknowledged
文摘With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy.
基金Jiangsu Province Natural Science Fund(BK20131459)Science and Technology Department Social Development Project(BE2011818)+1 种基金National Meteorological Public Professional Science and Technology Program of China(GYHY201306010)National Sci-Tech Support Plan(2011BAK21B04)
文摘Based on intensive automatic weather station data, satellite cloud imagery, NCEP reanalyzed data, and the simulation results from mesoscale numerical models, this study analyzes the characteristics and formation mechanisms of the mesoscale convection system(MCS) during the extreme precipitation event that was triggered by a weakened low-pressure inverted trough of Typhoon Haikui on August 10/2012. The results of this study show that cold air at the rear of a northeastern cold vortex creates thermodynamic conditions favorable to the development of extreme precipitation. The main body of the cold air is northward located so that the cold air invades only the middle layer of the periphery of the inverted trough. Thus, the cold air minimally affects the lower layer, which results in a vertically distributed structure of the temperature advection that augments the formation and development of convective instability stratification. In the middle troposphere, the cold air encounters the convergent, ascending, warm moist air from the low-pressure inverted trough, leading to frontogenesis. The frontogenesis enhances wind convergence which, in turn, further enhances the frontogenesis, and the positive feedback between these two forces augments the development of meso- and small-scale convection systems in the rainstorm region and its vicinity, which strengthens the upward transportation of water vapor from low layers and thickening of water vapor convergence and results in local heavy rains.
基金National Development and Plan for Key Foundamental Research (2009CB421505)11th National Five-Year Plan for Science Support (2006BAC02B)+1 种基金National Natural Science Foundation (40775058)Natural Science Foundation of Guangxi (2010GXNSFA013010)
文摘The NCEP/NCAR reanalysis data are used to investigate the role of cold air and moisture characteristics during the evolution of two cases of tropical cyclones (Nanmadol and Irma) which made landfall on China in wintertime. The results are shown as follows. (1) The East Asia trough steered the cold air into the tropical ocean in early winter. The tropical cyclones moved in opposite directions with a high moving out to sea and the enhancement of the pressure gradient at the periphery played a role in maintaining and strengthening the intensity of the storms. The intrusion of weak cold air into the low levels of the tropical cyclones strengthened them by improving the cyclonic disturbance when they were still over the warm sea surface. When the cold air was strong enough and intruded into the eyes, the warm cores were damaged and stuffed before dissipation. (2) The tropical cyclones were formed in a convergence zone of moisture flux and their development could enhance the disturbance of water vapor convergence, thus strengthening the moisture convergence zone. However, when they were outside the moisture zone, the storms could not gain sufficient water vapor and became weak. There were no belts of strong moisture transportation during the wintertime tropical cyclone processes.
基金supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MEST)(Grant No. 2011-0013879)supported by NSF (Grant Nos. AGS-0802888,AGS-1046171,and EEC-0313747)
文摘A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are used to understand the snowfall process, including why the precipitation maxima formed along the Yeongdong coastal region rather than over the mountain slope and ridge top during. The numerical simulation with a 4-kin horizontal grid spacing and 43 levels reproduces very well the narrow snowband located off the eastern Korean coast, away from, instead of over, the Yeongdong coastal mountain range. The general evolution of the snowband agrees quite well with radar observations, while the water-equivalent precipitation amount agrees reasonably well with radar precipitation estimate. The simulation results clearly show that the snow band developed due to the lifting by a coastal front that developed because of the damming of cold air against the eastern slope of the coastal mountain range. The damming was enhanced by the advection of cold air by a tow-level mountain-parallel jet from the north, formed due to geostrophic adjustment as the on-shore upslope air was decelerated by the mountain blocking. As the onshore flow weakened later due to synoptic-scale flow pattern change, the cold front propagated off shore and the precipitation dissipated.
文摘It is generally accepted that environmental factors can significantly influence respiratory system. Cold is one of these factors. Understanding of the reaction of airways to cold air is very important tool leading to improvement in management of cold induced rhinitis, cold induced asthma, exercise induced asthma, and exacerbation of chronic airway diseases induced by cold exposure. Despite the airways are protected against cold air by powerful heat and moisture exchanging counter current system within the nose, they are still at the risk of onset and development of cold induced symptoms mainly if this mechanism is insufficient, exposed person hyperventilates or is breathing subfreezing air. Some of the mechanisms involved in cold air induced reactions are understood quite well, but some of them are still discussed as they have not been satisfactorily explained, yet. Most discussed mechanisms by which cold air may induce respiratory symptoms include direct cooling and exsiccation of mucosal surface with subsequent hyper-tonicity of superficial fluid layer and interactions between the trigeminal and the vagus nerve at the central level. Molecular background for such a reaction may rely on the presence of thermo sensitive channels, mainly TRPM8, expressed on airway afferent nerves, which initiate response to cold air, giving a rise to autonomic responses like bronchoconstriction, cough, dyspnoea, chest tightness, mucus secretion and mucosal swelling. Identification of targets for cold action in the airway may help to identify potent antagonists which may prevent or reverse cold induced reactions sharing possibility for clinical application.
基金National Natural Science Foundation of China(40730948,40875030,41475041)
文摘Employing the mesoscale WRF(Weather Research and Forecast) model, Super Typhoon Saomai(2006) is simulated. The variation of track and intensity and its offshore rapid intensification process are well demonstrated by the model, and the temperature and humidity patterns associated with the dry cold air activity and their impact on and mechanism of the offshore rapid intensification of Saomai are mainly studied in this paper. The results indicate that high-resolution water vapor imagery can visually reveal the development, evolution, interaction as well as the mutual complementation of the dry cold air activity accompanied with the development of Saomai. The offshore rapid intensification phenomenon of Saomai is closely related to the dry cold air which originates from the upper- and mid-troposphere. Besides, the dry cold air from the upper troposphere is stronger than that from the mid-troposphere.Saomai intensifies as the dry cold air from the northwest moves toward its circulation but weakens when the dry cold air from the southwest is drawn into the storm. Dry cold airflows and their cold advection effect caused by the downward motion across the isentropic surface are favorable to the development of Saomai. The dry cold air always moves along an isentropic surface from the upper troposphere to the mid-troposphere around the typhoon circulation and contributes to Saomai's abrupt intensity change.
基金Project (50408019) supported by the National Natural Science Foundation of China
文摘A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.
文摘Based on the conventional meteorological data and the NCEP/NCAR 1° × 1° reanalysis data and those related to mid-scale automatic station, satellite cloud picture and radar return, with the dynamic diagnosis analysis method, an analysis is made on the process of the convective rainstorm of quasi-stationary front triggered by the weak cold air on June 4-7, 2014, showing: 1) the process occurred in the event of convection of a stationary front triggered by the eastward moving south trough and the southward moving weak cold air from west under the background of circulation of two ridges and one trough at the Asian-European mid-high latitude and weakening and southeastward moving subtropical high;2) a system configuration that contributes to convective rainstorms formed in the event of the convergence of low-level moisture, upper-level divergence and the continuous vertical ascending motion after the 200 hPa upper-level jet stream moved westwards from east and the 850 hPa southwest jet stream intensified;3) after the intrusion by weak cold air of the meso-scale katallobaric area formed by the accumulated warm moist air of Guangxi before the intrusion, the warm moist air rose to trigger convection;convection cells developed and spread nearby the boundary between anallobaric area and katallobaric area, during which total 5 MCSs developed and each formed a rainstorm center at the part where the MCSs coincide;a meso-scale katallobaric area forms and develops 2 - 5 hours earlier than convection, so that it is also a warning of heavy rains.
基金supported by the National Natural Science Foundation of China (Grant Numbers. 41276033)the Jiangsu Science and Technology Support Project (Grant Number. BE2014729)+1 种基金the support from Jiangsu Provincial Government through Jiangsu Chair Professorshipthe 2015 Jiangsu Program of Entrepreneurship and Innovation Group
文摘The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.
文摘A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300℃ are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield strength will increase. But if the volume fraction of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elongation will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will he unsatisfied.
基金Meteorological Technology Special Opening Projects of Zhejiang Province (kf2010002)National Public Welfare Special Project of China (GYHY201206006)+2 种基金Planning Project for Key National Fundamental Research (2009CB421504)National Natural Science Foundation of China (41105062,40675033)Meteorological Technology Planning Projects of Zhejiang Province (2011ZD01)
文摘In 2005,significant rainfall reinforcement and severe disaster was induced by tropical cyclone(TC) Talim after it made landfall on the east of China.Observational analyses show that it has relationship with cold air intrusion.For investigating the impact of cold air intensity,we make use of Weather Research and Forecasting(WRF) model,the synthesizer of NCEP/NCAR reanalysis data and Japan regional spectral model data,to carry out numerical experiments.Results show that rainfall reinforcement occurs in all experiments.Different intensity of cold air can modify the rainfall distribution and intensity significantly.In the rainfall center,the increment maximum of rainfall is twice as large as that of the minimum.Moderate cold air intrusion may result in the strongest rainfall reinforcement.Different cold air intensity can lead to different motion of low-level convergence lines and fronts.There is a good relationship between the rainfall region and the eastern part of the front.On one hand,strong cold air weakens the TC intensity by its intrusion into the TC center and results in weak convergence and a convergent zone and a rain band shifted southward.On the other hand,weak cold air reduces the convergence and moves the convergent zone and rain band northward.Moderate cold air intrusion maintains strong low-level convergence and high-level divergence,keeping strong upward motion over certain regions.Consequently,the rain band begins to stagnate and rainfall reinforces abruptly therein.
基金Supported by National Natural Science Foundation of China(Nos.21246012,21306015 and 21476032)
文摘Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae, so as to provide valuable information for largescale application of plasma in the fermentation industry. Suspensions of S. cerevisiae cells were exposed to air cold plasma for 0, 1, 2, 3, 4 and 5 min, and then subjected to various analyses prior to fermentation (Oh) and at the 9 and 21 h stages of fermentation. Compared with nonexposed cells, cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca2+ concentration as a result of the significant increase in membrane potential prior to fermentation. At the same time, the ATP level in the cell suspension decreased by about 40%, resulting in a reduction of about 60% in NADH prior to culturing. However, the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at 0 h. Taken together, the results indicated that exposure of S. cerevisiae to air cold plasma could increase its cytoplasmic free Ca2+ concentration by improving the cell membrane potential, consequently leading to changes in ATP and NADH levels.